АНТЕННА Российский патент 2013 года по МПК H01Q7/00 

Описание патента на изобретение RU2488201C2

Предлагаемая антенна может быть использована в качестве передающей при организации беспроводной связи электромагнитным полем через массив горных пород в шахтах.

Из [1] известно, что для передачи низкочастотных сигналов через массив горных пород используют в качестве передающей антенны электрический диполь, заземленный на концах. Электрический диполь, полотно, выполняют из электрического провода, как правило изолированного, длиной lg во много раз короче длины волны λ передаваемого сигнала. Поэтому для обеспечения протекания большего тока электрический диполь на концах заземляют. В [1] указывается, что кпд у такой антенны составляет 1-2%. Так как полотно электрического диполя обладает индуктивностью L, то при протекании по нему тока I вокруг полотна возникает магнитный поток [2]

ф = L I . ( 1 )

Также из [3] известно, что для увеличения тока в диполе, а по сути магнитного потока, используют параллельное включение нескольких, двух электрических диполей, заземленных на концах с синфазным их питанием, возбуждением.

Из [4] следует, что антенна, которая в 20 раз короче своей длины волны излучает лишь 5-10% поступающей в нее энергии, остальная подводимая энергия идет на нагрев полотна антенны и на нагрев почвы.

Так как у этих антенн волновые сопротивления не согласованы с волновым сопротивлением канала связи, кпд их мал.

В некоторых случаях используют рамочные антенны больших размеров [5], в которых для увеличения магнитного потока рамку настраивают в резонанс с помощью последовательного включения в цепь полотна антенны конденсатора [6] для компенсации индуктивного сопротивления на частоте передаваемого сигнала. Так как волновое сопротивление известных рамочных антенн не согласовывается с волновым сопротивлением канала связи, каковым является массив горных пород, их кпд так же мал.

Известна [7] ферритовая магнитная антенна, у которой волновое сопротивление можно согласовать с волновым сопротивлением среды, канала связи, однако для использования ее в качестве передающей геометрические размеры и вес ее будет огромен, что затруднит ее изготовление и применение, а так как катушка индуктивности у нее одна, общая и имеет одинаковое число витков ее индуктивное сопротивление для линейного ферритового стержня к индуктивному сопротивлению короткозамкнутому ферритовому сердечнику не только не одинаковы, но и меньше, имеет место потеря передаваемой мощности, т.е. кпд на передачу. К тому же приведенные антенны обладают ограниченной диаграммой направленностью.

Целью предлагаемой антенны является простота реализации передающей антенны, повышение ее эффективности, кпд за счет увеличения потока магнитной индукции в канал связи, как путем увеличения индуктивности полотна электрического диполя, заземленного на концах, или рамочной антенны, согласно формуле (1), так и путем согласования волнового сопротивления предлагаемой антенны с волновым сопротивлением канала линии связи для передачи в канал связи максимальной мощности сигнала.

Поставленная цель достигается благодаря тому, что множество ферритовых магнитных антенн, состоящих из короткозамкнутого ферритового сердечника, связаны общей катушкой индуктивности с линейным ферритовым стержнем и конденсатором, включенным параллельно общей катушке индуктивности надеты (нанизаны) короткозамкнутыми ферритовыми сердечниками ферритовых магнитных антенн синфазно на полотно антенны электрического заземленного диполя на концах или на полотно рамочной антенны, образуя с полотном антенны первичную обмотку множества трансформаторов тока, это множество одиночных ферритовых магнитных антенн, состоящих из короткозамкнутого ферритового сердечника и линейного ферритового стержня, могут быть связаны между собой как полным, так и частичным включением общей вторичной обмоткой трансформатора тока катушкой индуктивности трансформаторной или автотрансформаторной связью с ферритовым линейным стержнем, параллельно концам катушки индуктивности которой включен конденсатор.

Электрическая схема предлагаемой антенны типа электрического диполя, заземленного на концах, показана на фиг.1, рамочная антенна - на фиг.2.

Конструктивно антенна выполнена из электрического диполя, заземленного на концах, или рамочной антенны, на полотно, образующее рамку антенны или электрический диполь, заземленный на концах, последовательно надеты (нанизаны) синфазно множество ферритовых магнитных антенн, состоящих из короткозамкнутого ферритового сердечника, образующего с полотном антенны первичную обмотку трансформатора тока, и линейного ферритового стержня, охваченного общей катушкой индуктивности, являющейся вторичной обмоткой трансформатора тока, параллельно концам которой включен конденсатор - фиг.3а, а на фиг.3б показана ферритовая магнитная антенна, но с частичным размещением числа витков вторичной обмотки трансформатора тока на короткозамкнутом ферритовом сердечнике и ее большего количества витков на линейном ферритовом стержне, показано на фиг.4, для согласования их индуктивных сопротивлений, параллельно концам катушки индуктивности включен конденсатор, в некоторых случаях число линейных ферритовых стержней у ферритовых магнитных антенн может быть два и располагаться они относительно друг друга должны под углом в 90 градусов, в этом случае вторичная обмотка трансформатора тока, являющаяся общей катушкой индуктивности ферритовой магнитной антенны, как для короткозамкнутого ферритового сердечника и двух линейных ферритовых стержней, разделяется и охватывает их своими витками частично, причем, как и в случае для одного линейного ферритового сердечника, большее число витков может располагаться на двух линейных ферритовых стержнях, делясь между собой, фиг.5 и фиг.6, соответственно.

Работает антенна следующим образом.

При протекании электрического тока по полотну заземленного на концах электрического диполя или рамочной антенны вокруг полотна возникает магнитный поток, часть которого отбирается и концентрируется в короткозамкнутом ферритовом сердечнике в имеющихся множествах ферритовых магнитных антенн. Плотность магнитного потока в каждом из множества короткозамкнутых ферритовых сердечниках возрастает в µо раз на величину магнитной проницаемости сердечника по сравнению с воздухом [8, стр.46, 47; 9, стр.74, 83; 10, стр.164, 165, 186]. Этот сконцентрированный в сердечнике и "усиленный" в µо раз магнитный поток за счет уменьшения магнитного сопротивления по сравнению с воздухом, через вторичную обмотку трансформатора тока, являющуюся общей катушкой индуктивности, как для линейного ферритового стержня индуктирует в них магнитный поток. То есть магнитный поток, возбуждаемый первичной обмоткой трансформатора тока короткозамкнутого ферритового сердечника, индуктирует во вторичной обмотке эдс самоиндукции, которая, в свою очередь, за счет резонанса тока, возникающего в цепи катушки индуктивности, и конденсатором на частоте сигнала наводит магнитный поток рассеивания в линейном ферритовом стержне для его излучения в пространство, канал связи.

Конденсатор служит для компенсации реактивного сопротивления, создаваемого катушкой индуктивности вторичной обмоткой трансформатора тока в этой цепи на частоте передаваемого сигнала, что, в свою очередь, увеличивает магнитный поток рассеивания в линейном ферритовом стержне, а так как магнитная проницаемость короткозамкнутого ферритового сердечника и линейного ферритового стержня могут отличаться, то для передачи всего магнитного потока, наведенного в короткозамкнутом ферритовом сердечнике, максимально передать в линейный ферритовый стержень необходимо их индуктивные сопротивления согласовать. Например, если магнитная проницаемость короткозамкнутого ферритового сердечника будет больше проницаемости линейного ферритового стержня, то часть катушки индуктивности на линейном ферритовом стержне должна быть во столько же раз больше (или меньше), на фиг.4 дана для наглядности и пояснения работа ферритовой магнитной антенны по фиг.3б,

m = L o μ o L _ μ _ , ( 2 )

где m - коэффициент, определяющий разницу числа витков;

Loµo - индуктивность катушки ее части по отношению к короткозамкнутому ферритовому сердечнику;

L_µ_ - индуктивность катушки ее части от проницаемости линейного ферритового стержня.

Это условие позволяет согласовать волновое сопротивление ферритовой магнитной антенны с волновым сопротивлением канала связи и передавать максимальную мощность (плотность) магнитного потока в канал связи.

Суммарный поток излучения антенны определиться из суммы магнитных потоков, синфазно излучаемой каждой ферритовой магнитной антенны в отдельности

Ф = Ф 1 + Ф 2 + + Ф n , ( 3 )

где Ф1, Ф2, … Фn - магнитный поток излучения каждой в отдельности ферритовой магнитной антенной;

n - порядковый номер ферритовой магнитной антенны.

В этом случае можно записать формулу (1) в виде

Ф n = μ o L I I , ( 4 )

где µo - магнитная проницаемость короткозамкнутого ферритового сердечника;

LI - индуктивность первичной обмотки трансформатора тока, части полотна антенны;

I - ток в антенне.

Применение ферритовых магнитных антенн по фиг.5 и фиг.6 введением второго линейного ферритового стержня и размещения их под углом в 90 градусов относительно друг друга позволяет создать, например, для рамочной антенны круговую диаграмму направленности [11, стр.66, рис.3.24]. Для этого вторичную обмотку ферритовой магнитной антенны образованного трансформатора тока с полотном антенны разделяют на две, одну для одного линейного ферритового стержня, другую для другого. Причем для согласования по их индуктивному сопротивлению большее число витков катушки индуктивности может располагаться на линейных ферритовых стержнях, чем на части короткозамкнутого ферритового сердечника.

Поставленная цель изобретения достигается увеличением индуктивности полотна заземленного электрического диполя на концах или рамочной антенны путем внесения множества короткозамкнутых ферритовых сердечников с большой магнитной проницаемостью в "цепь" полотна антенны и съема с них представленным образом наведенной магнитной энергии и передачи ее оптимальным образом в канал линии связи, что обеспечивает соответствие технического решения критерию новизна, т.к. оно не известно из уровня техники доселе и существенно отличается от всех известных ранее технических решений для достижения положительного эффекта в виде повышения магнитного потока на излучение, так необходимого на приемной стороне линии связи [11, стр.38], т.е. увеличивает кпд, дальность связи, улучшает значения отношения С/Ш, С/П при равных энергетических затратах по сравнению с известными антеннами, что является целью изобретения. Следовательно, указанные отличительные признаки являются существенными, а предлагаемое техническое решение отвечает критерию изобретательский уровень.

Доказательство эффективности предлагаемой антенны.

На фиг.7, 8 приводится сравнительный эксперимент заявленной антенны с известной рамочной антенной. Для этого была изготовлена известная рамочная антенна диаметром 115 мм, состоящая из двух витков изолированного провода диаметром 0,5 мм, и заявленная антенна по фиг.2 диаметром рамки также 115 мм и состоящая из двух витков того же провода, на полотно рамки были надеты синфазно включенные пять одинаковых ферритовых магнитных антенн согласно фиг.3 (из-за простоты и быстроты их реализации), состоящих из короткозамкнутого ферритового сердечника типа К17,5*8*5 мм марки М3000 НМ и линейного ферритового стержня марки М400 НН длиной 20 см, диаметром 10 мм и общей катушкой индуктивности, которая содержала 100 витков провода ПЭЛ диаметром 0,25 мм и конденсатором величиной порядка 6800 пФ для настройки в резонанс на частоту 10867 Гц (+/-348 Гц).

В качестве приемной антенны использовалась аналогичная (пяти) ферритовая магнитная антенна. На фиг.7 показана схема эксперимента, когда передающая и приемная антенны располагались в обоих случаях на одинаковом расстоянии друг от друга последовательно, т.е. в длину, а на фиг.8 передающая и приемная испытуемые антенны располагались параллельно.

Из результатов сравнительного эксперимента видно, что выигрыш заявленной антенны значительный и составил 32 дБ.

Эксперимент доказал, что предлагаемая антенна обладает большим излучающим положительным эффектом по сравнению с известными антеннами, следовательно, ее кпд выше, что является целью изобретения.

Литература

1. Корчагин Ю.А., Саломатов В.П., Чернов А.А. Радиосвязь в проводящих средах. Новосибирск: Наука. Сиб. отд-ние, 1990, стр.47, рис.3.1.

2. Кузнецов М.И. Основы электротехники. Под ред. д-ра техн. наук С.В.Страхова. 9-е изд., М., Высшая школа, 1964, стр.186.

3. Система беспроводной шахтной связи с синфазно возбуждаемыми диполями. Криницин Л.А., Выскубенко В.П. Горный журнал. Изв. высш. учеб. зав. 1978, №1, 74-76 с.

4. Сверхпроводящая антенна. Наука и жизнь. №3, 1989, стр.55.

5. Шварц Б.А. Оперативная беспроводная индуктивная связь внутри предприятия (Основы теории и расчета). - 2-е изд., перераб. и доп. М.: Связь, 1978.

6. Гречихин А.И. Соревнования "охота на лис". Изд. ДОСААФ. М. 1973 (стр.28, рис.13).

7. А.с. 1569925 СССР A1, H01Q 7/08.

8. Матвеев Г.А. и Хомич В.И. Катушки с ферритовыми сердечниками. Изд. 2-е доп. М., "Энергия", 1967.

9. Жеребцов И.П. Электрические и магнитные цепи: Основы электротехники. - Л.: Энергоатомиздат. Ленингр. Отделение, 1982.

10. Барнс Дж. Электронное конструирование: Методы борьбы с помехами: Пер. с англ. - М.: Мир, 1990.

11. Калихман С.Г., Левин Я.М. Основы теории и расчета радиовещательных приемников на полупроводниковых приборах. Изд. "Связь", М., 1969.

Похожие патенты RU2488201C2

название год авторы номер документа
МАГНИТНАЯ АНТЕННА 1995
  • Цатурян Эдуард Николаевич[Ua]
RU2099830C1
МАГНИТНАЯ АНТЕННА 2000
  • Цатурян Э.Н.
  • Цатурян Елена Эдуардовна
RU2191450C2
МАГНИТНАЯ АНТЕННА 1998
  • Цатурян Э.Н.(Ru)
  • Цатурян Елена Эдуардовна
RU2145137C1
ШИРОКОПОЛОСНАЯ РАМОЧНАЯ АНТЕННА 1991
  • Картелев А.Я.
  • Прудкой Н.А.
RU2054765C1
МУЛЬТИПЛИЦИРОВАННЫЙ СПОСОБ ОБНАРУЖЕНИЯ ПОДПОВЕРХНОСТНЫХ ЭЛЕКТРОПРОВОДЯЩИХ ОБЪЕКТОВ 2021
  • Брякин Иван Васильевич
  • Бочкарев Игорь Викторович
RU2782902C1
УПРАВЛЯЕМЫЙ ПРЕСЕЛЕКТОР, СОВМЕЩЕННЫЙ С МАГНИТНОЙ ФЕРРИТОВОЙ АНТЕННОЙ 2013
  • Седов Виталий Анатольевич
  • Каган Эдуард Михайлович
  • Шилов Павел Александрович
  • Кутикин Сергей Сергеевич
  • Горегляд Виктор Демьянович
RU2546542C1
СХЕМА УСИЛИТЕЛЯ СИГНАЛА, ПРЕОБРАЗОВАТЕЛЬ НАПРЯЖЕНИЯ И СИСТЕМА 2018
  • Вестфаль, Эрнст-Хайнрих
RU2736323C1
ФЕРРИТОВАЯ АНТЕННА 2008
  • Бочаров Алексей Михайлович
  • Бочаров Михаил Иванович
  • Новожилов Олег Петрович
RU2344433C1
Способ калибровки магнитных антенн 2019
  • Цатурян Эдуард Николаевич
RU2729456C2
СИСТЕМА СВЯЗИ СВЕРХНИЗКОЧАСТОТНОГО И КРАЙНЕНИЗКОЧАСТОТНОГО ДИАПАЗОНОВ С ГЛУБОКОПОГРУЖЕННЫМИ И УДАЛЕННЫМИ ОБЪЕКТАМИ 2017
  • Кужелев Александр Александрович
  • Пониматкин Виктор Ефимович
  • Майоров Василий Александрович
  • Романченко Евгений Владимирович
RU2659409C1

Иллюстрации к изобретению RU 2 488 201 C2

Реферат патента 2013 года АНТЕННА

Изобретение относится к радиотехнике и может использоваться при организации беспроводной связи в шахтах. Технический результат - повышение эффективности за счет увеличения магнитной индукции в канале связи. Предлагаемая антенна согласовывается с волновым сопротивлением среды, канала связи и может использоваться в качестве передающей. Антенна состоит из электрического диполя, заземленного на концах, или рамочной антенны, на полотно, образующее рамку антенны или электрический диполь, заземленный на концах, последовательно надеты (нанизаны) синфазно множество ферритовых магнитных антенн, состоящих из короткозамкнутого ферритового сердечника, образующего с полотном антенны первичную обмотку трансформатора тока, и излучателя, выполненного из линейного ферритового стержня, охваченных общей катушкой индуктивности, являющейся вторичной обмоткой трансформатора тока, параллельно концам которой включен конденсатор для настройки в резонанс на частоту передаваемого сигнала. Для получения круговой диаграммы направленности антенны число линейных ферритовых стержней может быть два и располагаться они относительно друг друга должны под углом в 90 градусов. Сравнительные испытания предлагаемой антенны с использованием всего пяти ферритовых магнитных антенн, надетых и включенных синфазно на полотно известной рамочной антенны диаметром 115 мм, на частоте 11 кГц показали выигрыш в 32 дБ. 1 з.п. ф-лы, 8 ил.

Формула изобретения RU 2 488 201 C2

1. Антенна, состоящая из электрического диполя, заземленного на концах, другими концами подключенная к источнику сигнала, или рамочной антенны, подключенной к источнику сигнала, и ферритовой магнитной антенны, состоящей из короткозамкнутого ферритового сердечника и одного линейного ферритового стержня, охваченных общей катушкой индуктивности и конденсатора, включенного параллельно с катушкой индуктивности, отличающаяся тем, что множество ферритовых магнитных антенн надеты короткозамкнутыми ферритовыми сердечниками ферритовых магнитных антенн синфазно на полотно антенны электрического диполя, заземленного на концах, или на полотно рамочной антенны, образуя с полотном антенны множество трансформаторов тока.

2. Антенна по п.1, отличающаяся тем, что множество ферритовых магнитных антенн состоят из двух линейных ферритовых стержней и располагаются ферритовые стержни относительно друг друга под углом 90°, а катушка индуктивности, вторичная обмотка трансформатора тока, разделяется на две последовательные катушки, каждая из которых своими витками охватывает как один линейный ферритовый стержень, так и другой линейный ферритовый стержень с короткозамкнутым ферритовым сердечником ферритовой магнитной антенны.

Документы, цитированные в отчете о поиске Патент 2013 года RU2488201C2

РАМОЧНАЯ АНТЕННА 2003
  • Бузов А.Л.
  • Елехин А.В.
  • Казанский Л.С.
RU2248075C1
РАМОЧНАЯ АНТЕННА (ВАРИАНТЫ) 2007
  • Сомов Анатолий Михайлович
  • Кожухов Андрей Борисович
  • Кабетов Роман Владимирович
RU2355084C2
Прибор для вычерчивания дуг окружностей больших радиусов 1947
  • Шестов Б.С.
SU75508A1
РАМОЧНАЯ АНТЕННА 2002
  • Тимошенко Александр Иванович
RU2233515C2
TW 200814433 A, 16.03.2008
JP 2010098720 A, 30.04.2010.

RU 2 488 201 C2

Даты

2013-07-20Публикация

2011-01-20Подача