Изобретение относится к технике теплоснабжения, а именно, к централизованному теплоснабжению жилых и преимущественно общественных и промышленных зданий.
Известен абонентский ввод системы теплоснабжения здания по способу регулирования температуры воды в системе отопления с элеватором (см. а.с. №1046580 МКл F24D 3/00, 1983 Бюл. №37), содержащий подающие и обратные трубопроводы, элеватор, задвижки, расположенные до и после элеватора, и нагревательные приборы.
Недостатком является перерасход сетевой воды в переходные периоды, когда допускается снижение нормированно необходимых температур системы отопления, как-то выходные и праздничные дни, а также нерабочие часы из-за невозможности регулирования количественного поступления теплоносителей через элеватор без изменения его давления, а это, как известно, ухудшает работу элеваторного узла и системы отопления в целом.
Известен абонентский ввод системы теплоснабжения здания (см. патент РФ №2427762 МПК F24D 3/00, 2011 Бюл.24) содержащий подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора и нагревательные приборы, причем элеватор установлен на подающем трубопроводе параллельно задвижке с электроприводом и регулятором скорости вращения в виде блока порошковых электромагнитных муфт и снабжен регулятором температуры, включающим регулятор температуры воздуха с датчиками температуры внутри и снаружи здания, и регулятором температуры воды с датчиками температуры в подающем и обратном трубопроводах, причем регуляторы температуры воздуха и воды содержат взаимосвязанные блоки сравнения, задания, блоки нелинейной обратной связи, электронные и магнитные усилители, соединенные с регулятором скорости вращения в виде блока порошковых электромагнитных муфт электропривода задвижки.
Недостатком является энергоемкость процесса регулирования абонентского ввода системы из-за дополнительных затрат электрической энергии на питание системы электронно-автоматического контроля параметров подачи горячей воды тепловой сети посредством задвижки с регулятором скорости вращения.
Технической задачей изобретения является снижение энергоемкости работы системы теплоснабжения здания за счет использования теплового потенциала горячей воды в подающем трубопроводе путем снабжения его термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячей воды тепловой сети, в котором размещены «горячие» концы комплекта дифференциальных термопар, а их «холодные» концы расположены на внешней поверхности корпуса вдали от проходного канала, что позволяет получать питание для электронных схем автоматизированного контроля.
Технический результат достигается тем, что абонентский ввод системы теплоснабжения здания содержит подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора, и нагревательные приборы, при этом элеватор установлен на подающем трубопроводе параллельно задвижке с электроприводом и регулятором скорости вращения в виде блока порошковых электромагнитных муфт и снабжен регулятором температуры, включающим регулятор температуры воздуха с датчиками температуры внутри и снаружи здания и регулятором температуры воды с датчиками температуры в подающем и обратном трубопроводах, причем регуляторы температуры воздуха и воды содержат взаимосвязанные блоки сравнения, задания, блоки нелинейной обратной связи, электронные и магнитные усилители, соединенные с регулятором скорости вращения в виде блока порошковых электромагнитных муфт электропривода задвижки, причем подающий трубопровод снабжен термогенератором, выполненным в виде корпуса с проходным каналом для горячей воды тепловой сети, в котором укреплены «горячие» концы комплекта дифференциальных термопар, а «холодные» концы расположены на внешней поверхности корпуса термоэлектрического генератора вдали от проходного канала горячей воды тепловой сети, причем вход проходного канала соединен с подающим трубопроводом, а его выход соединен с подающим трубопроводом через трехходовой кран, установленный перед задвижкой с электроприводом.
На фиг.1 изображен предлагаемый абонентский ввод системы теплоснабжения здания.
Абонентский ввод системы теплоснабжения здания состоит из подающего 1 и обратного 2 трубопроводов тепловой сети, элеватора 3, задвижек 4 и 5, (подсоединения элеватора 3 к подающему 1 трубопроводу), нагревательных приборов 6 отапливаемого здания 7, задвижки 8 с электроприводом 9, установленной на подающем 1 трубопроводе параллельно элеватору 3 по ходу движения горячей сетевой воды, регулятора температуры 10, который соединен с датчиком температуры воздуха 11 внутри и с датчиком температуры воздуха 12 снаружи здания 7, а также с датчиком температуры воды 13 на подающем 1 и с датчиком температуры воды 14 на обратном 2 трубопроводах тепловой сети. При этом регулятор температуры 10 электрически связан с электроприводом 9 задвижки 8 на подающем 1 трубопроводе, а элеватор 3 трубопроводом 15 соединен с обратным 2 трубопроводом.
Элеватор 3 установлен на подающем трубопроводе 1 параллельно задвижке 8 с электроприводом 9 и регулятором скорости вращения 16 в виде блока порошковых электромагнитных муфт и снабжен регулятором температуры 10, включающим регулятор температуры воздуха 17 с датчиком температуры воздуха внутри 11 и датчиком температуры воздуха снаружи 12 отапливаемого здания 7 и регулятором температуры воды 18 с датчиком температуры 13 в подающем 1 и датчиком температуры 14 в обратном 2 трубопроводах. Причем регулятор температуры воздуха 17 и регулятор воды 18 содержат взаимосвязанные блоки сравнения 19 и 20, задания 21 и 22, блоки нелинейной обратной связи 23 и 24, электронные усилители 25 и 26 и магнитные усилители 27 и 28, соединенные с регулятором скорости вращения 16 в виде блока порошковых электромагнитных муфт электропривода 9 задвижки 8.
Подающий трубопровод 1 снабжен термоэлектрическим генератором 29, выполненным в виде корпуса 30 с проходным каналом 31 для горячей воды тепловой сети, в котором укреплены «горячие» концы 32 комплекта дифференциальных термопар 33, а их «холодные» концы 34 расположены на внешней стороне 35 корпуса 30 термоэлектрического генератора 29. Вход 36 проходного канала 31 для горячей воды тепловой сети соединен с питающим трубопроводом 1, а его выход 37 соединен с подающим трубопроводом через трехходовой кран 38, установленный перед задвижкой 8 с электроприводом 9.
Абонентский ввод системы теплоснабжения преимущественно производственного здания работает следующим образом.
Температура в подающем трубопроводе 1 поддерживается в пределах 100°С (см., например, СНиП 41-02-2003 Тепловые сети. М.: Госстрой России 2003), а внутри помещения, где размещено оборудование, обслуживающее абонентский ввод системы теплоснабжения здания, температура воздуха в пределах 15-20°С. Следовательно, при поступлении части потока теплоносителя из подающего трубопровода через вход 36 в проходной канал 31 для горячей воды тепловой сети, наблюдается контакт с укрепленными «горячими» концами 32 комплекта дифференциальных термопар 33, после чего он направляется через выход 37 в трехходовой кран 38, где смешивается с основным потоком теплосети в подающем трубопроводе 1 перед задвижкой 8 с электроприводом 9. Одновременно «холодные» концы 34, находящиеся на внешней стороне 35 корпуса 30, контактируют с воздухом внутри помещения. В результате разности температур горячей воды тепловой сети подающего трубопровода 1 и температуры воздуха внутри помещения в элементах комплекта дифференциальных термопар 33 возникает термоЭДС, а при использовании хромель-копеля в качестве элемента комплекта дифференциальных термопар 33 значение термоЭДС достигает 5,0 и более мВ (см., например, Иванова Г.М. Теплотехнические измерения и приборы. М.: Энергоатомиздат.1984, 230 с.), что обеспечивает наличие напряжения на выходе из термоэлектрического генератора 29 в пределах 12-36 В (см., например, Технические основы теплотехники. Теплотехнический эксперимент. Справ. под общ. ред. В.М.Зорина. Энергоатомиздат, 1988. 560 с.).
Этого напряжения вполне достаточно для питания электронных схем регулятора температуры воздуха 17, регулятора температуры воды 18 и автоматизированного управления регулятором скорости вращения 16, что и позволяет снизить в целом энергоемкость системы централизованного теплоснабжения.
В рабочее время, в зависимости от нормированной температуры внутреннего воздуха в здании 7, синхронно открываются задвижки 4 и 5 до и после элеватора 3 при отрегулированной на заданный расход в подающем 1 трубопроводе горячей воды и открытой задвижке 8 с электроприводом 9 и на нагревательные приборы поступает необходимое количество подмешиваемой воды подающего 1 и оборотного 2 трубопроводов.
При наступлении нерабочего времени или выходных и праздничных дней для снижения расхода горячей воды тепловой сети с допустимым уменьшением температуры воздуха внутри здания 7 от датчика температуры 11 поступает сигнал в регулятор температуры 10, а именно, в регулятор температуры воздуха 17, который в блоке сравнения 22 согласуется с сигналом от датчика температуры 12 наружного воздуха и становится большим, чем сигнал блока задания 22. В результате на выходе блока сравнения 20 появляется сигнал отрицательной полярности, который поступает на вход электронного усилителя 26 одновременно с сигналом нелинейной обратной связи блока 24. Сигнал с выхода электронного усилителя 26 поступает на вход магнитного усилителя 28, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт электропривода 9 задвижки 8. Отрицательная полярность сигнала электронного усилителя 26 вызывает уменьшение тока возбуждения на выходе магнитного усилителя 28. В результате момент, передаваемый регулятором скорости вращения 16 в виде блока порошковых электромагнитных муфт от электропривода 9 на задвижку 8, уменьшается, прикрывая задвижку 8.
В результате по подающему 1 трубопроводу поступает меньшее количество горячей воды тепловой сети и в суммарный поток для нагревательных приборов 6 поступает большее количество воды из обратного 2 трубопровода, т.к. элеватор 3 остается под стабильным перепадом давления и температура воздуха внутри отапливаемого здания 7 уменьшается.
При переходе к рабочим часам осуществляется увеличение температуры воздуха внутри здания 7 до необходимой нормированной температуры. От датчика температуры воздуха 11 внутри здания поступает сигнал в регулятор температуры 10, а именно в регулятор температуры воздуха 17, который в блоке сравнения 22 согласуется с сигналом от датчика температуры 12 наружного воздуха и становится меньшим, чем сигнал блока задания 22. В результате на выходе блока сравнения 20 появляется сигнал положительной полярности, который поступает на вход магнитного усилителя 26 одновременно с сигналом нелинейной обратной связи блока 24. Сигнал с выхода электронного усилителя 26 поступает на вход магнитного усилителя 28, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт привода 9 задвижки 8. Положительная полярность сигнала электронного усилителя 26 вызывает увеличение тока возбуждения на выходе магнитного усилителя 28. В результате момент, передаваемый, регулятором скорости вращения 16 в виде блока порошковых электромагнитных муфт от электропривода 9 на задвижку 8, увеличивается, открывая ее для обеспечения поступления большего количества горячей воды тепловой сети с температурой, регистрируемой датчиком 13 на подающем 1 трубопроводе.
Регулятор температуры воздуха 17 периодически опрашивает датчик температуры воздуха 12 снаружи здания 7, не допуская уменьшение температуры воздуха внутри помещения ниже допустимой, и на основании соотношения сигналов, поступающих от датчика температуры 11 внутри и датчика температуры 12 снаружи здания, постоянно через регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт воздействует на электропривод 9 задвижки 8, приоткрывая или прикрывая ее для плавного регулирования поступающей горячей воды по подающему 1 трубопроводу тепловой сети при стабильной работе элеватора 3. В результате достигается снижение энергозатрат тепловой сети на теплоснабжение в нерабочие часы, праздничные и выходные дни.
Изменение температуры горячей воды в подающем 1 трубопроводе регистрируется датчиком температуры 13, изменение температуры охлажденной воды в обратном 2 трубопроводе регистрируется датчиком температуры 14. От датчика температуры 13 сигнал поступает регулятор температуры 10, а именно, в регулятор температуры воды 18, где в блоке сравнения 19 согласуется с сигналом от датчика температуры 14 и в зависимости от соотношения температур воды в подающем 1 и в обратном 2 трубопроводах становится большим или меньшим, чем сигнал блока задания 21. В результате на выходе блока сравнения 19 появляется сигнал отрицательной или положительной полярности, который поступает на вход электронного усилителя 25 одновременно с сигналом нелинейной обратной связи блока 23. С выхода электронного усилителя 25 сигнал поступает на вход магнитного усилителя 27, где усиливается по мощности, выпрямляется и поступает на регулятор скорости вращения 16 в виде блока порошковых электромагнитных муфт привода 9 задвижки 8. Отрицательная или положительная полярность сигнала электронного усилителя 25 вызывает уменьшение или, соответственно, увеличение тока возбуждения на выходе магнитного усилителя 27. В результате момент, передаваемый регулятором скорости вращения 16 в виде блока порошковых электромагнитных муфт от электропривода 9 на задвижку 8, уменьшает или, соответственно, увеличивает ее открытие, т.е. осуществляет регулирование теплоснабжения здания 7 поддерживая температурный график с экономией тепловой энергии, что приводит к снижению расчетного расхода воды на 20%-25% за счет оптимизации подачи тепла на нагревательные приборы 6 в различные периоды отопления здания 7.
Оригинальность предлагаемого технического решения заключается в том, что достигается снижение энергоемкости системы теплоснабжения за счет использования теплового потенциала горячей воды тепловой сети подающего трубопровода в качестве источника электрической энергии путем снабжения его термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом горячей воды тепловой сети, в котором укреплены «горячие» концы комплекта дифференциальных термопар, а «холодные» концы расположены на внешней поверхности корпуса термоэлектрического генератора вдали от проходного канала горячей воды тепловой сети.
название | год | авторы | номер документа |
---|---|---|---|
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ | 2013 |
|
RU2551867C1 |
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ | 2010 |
|
RU2427762C1 |
СИСТЕМА ОБОРОТНОГО ВОДОСНАБЖЕНИЯ | 2013 |
|
RU2569798C2 |
УСТРОЙСТВО АВТОМАТИЗИРОВАННОГО РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА НА ОТОПЛЕНИЕВ СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ | 2014 |
|
RU2581975C1 |
Система оборотного водоснабжения | 2016 |
|
RU2643407C2 |
Система оборотного водоснабжения | 2018 |
|
RU2700988C1 |
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ | 2016 |
|
RU2629169C1 |
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ РАСХОДА ТЕПЛА НА ОТОПЛЕНИЕ В СИСТЕМАХ ТЕПЛОСНАБЖЕНИЯ | 2011 |
|
RU2485407C1 |
УСТРОЙСТВО ДЛЯ РЕГУЛИРОВАНИЯ ТЕМПЕРАТУРЫ ВОЗДУХА В ПОМЕЩЕНИИ | 2013 |
|
RU2533701C2 |
Узел регулирования параметров теплоносителя с системой автоматического регулирования | 2024 |
|
RU2825920C1 |
Изобретение относится к централизованному теплоснабжению жилых общественных и промышленных зданий. Абонентский ввод системы теплоснабжения здания содержит подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора, нагревательные приборы. Элеватор установлен на подающем трубопроводе и снабжен регулятором температуры воздуха и регулятором температуры воды. Регуляторы температуры воздуха и воды содержат взаимосвязанные блоки сравнения, задания, блоки нелинейной обратной связи, электронные и магнитные усилители, соединенные с регулятором скорости вращения в виде блока порошковых электромагнитных муфт электропривода задвижки. Техническим результатом изобретения является снижение энергоемкости работы системы теплоснабжения здания за счет использования теплового потенциала горячей воды в подающем трубопроводе путем снабжения его термоэлектрическим генератором, выполненным в виде корпуса с проходным каналом для горячей воды тепловой сети, в котором размещены «горячие» концы комплекта дифференциальных термопар, а их «холодные» концы расположены на внешней поверхности корпуса вдали от проходного канала, что позволяет получать питание для электронных схем автоматизированного контроля. 1 ил.
Абонентский ввод системы теплоснабжения здания, содержащий подающий и обратный трубопроводы, элеватор, задвижки, расположенные до и после элеватора, и нагревательные приборы, причем элеватор установлен на подающем трубопроводе параллельно задвижке с электроприводом и регулятором скорости вращения в виде блока порошковых электромагнитных муфт и снабжен регулятором температуры, включающим регулятор температуры воздуха с датчиками температуры внутри и снаружи здания и регулятором температуры воды с датчиками температуры в подающем и обратном трубопроводах, причем регуляторы температуры воздуха и воды содержат взаимосвязанные блоки сравнения, задания, блоки нелинейной обратной связи, электронные и магнитные усилители, соединенные с регулятором скорости вращения в виде блока порошковых электромагнитных муфт электропривода задвижки, отличающийся тем, что подающий трубопровод снабжен термогенератором, выполненным в виде корпуса с проходным каналом для горячей воды тепловой сети, в котором укреплены «горячие» концы комплекта дифференциальных термопар, а их «холодные» концы расположены на внешней поверхности корпуса термоэлектрического генератора вдали от проходного канала для горячей воды тепловой сети, причем вход проходного канала соединен с подающим трубопроводом, а его выход соединен с подающим трубопроводом через трехходовой кран, установленный перед задвижкой с электроприводом.
АБОНЕНТСКИЙ ВВОД СИСТЕМЫ ТЕПЛОСНАБЖЕНИЯ ЗДАНИЯ | 2010 |
|
RU2427762C1 |
RU 102094 U1, 10.02.2011 | |||
Прибор для отбора из резервуаров средних проб жидкости, особенно застывающей при охлаждении | 1954 |
|
SU98542A1 |
CN 201779771 U, 30.03.2011. |
Авторы
Даты
2013-07-27—Публикация
2011-12-15—Подача