СПОСОБ ИЗМЕРЕНИЯ РАСХОДА МНОГОФАЗНОЙ ЖИДКОСТИ Российский патент 2013 года по МПК G01F1/66 

Описание патента на изобретение RU2489685C2

Способ измерения расхода многофазной жидкости относится к нефтегазодобывающей области и, в частности, может быть использовано для измерения дебита многофазных потоков эксплуатационных газовых, газоконденсатных и нефтяных скважин.

Известен «СПОСОБ ИЗМЕРЕНИЯ РАСХОДА ПРИ НЕРАВНОМЕРНОМ ДВИЖЕНИИ ЖИДКОСТИ» (Номер патента: 2140538. Класс(ы) патента: Е21В 47/10. G01F 1/66). Задачей изобретения является упрощение процесса контроля расхода жидкости, протекающей по трубопроводу. Это достигается тем, что способ включает измерение времени прохождения жидкости через известное сечение, скорости этого прохождения и последующую обработку результатов. Новым является то, что время прохождения определяют по наличию акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, а скорость прохождения жидкости определяют по частоте возникновения порций акустических шумов, вызываемых неравномерностью движения жидкости.

Недостатком аналога является отсутствие анализа информации, содержащейся в акустическом сигнале, например частоты и амплитуды сигнала. Акустический сигнал используют только для определения скорости движения всей жидкости без выделения информации об отдельных фазах, а также определения времени начала и конца цикла подачи жидкости.

Также известен способ измерения расхода многофазных жидкостей («СИСТЕМЫ ОПЕРАТИВНОГО КОНТРОЛЯ ПРОИЗВОДИТЕЛЬНОСТИ НЕФТЕГАЗОВЫХ СКВАЖИН», журнал «Современные технологии автоматизации» №2. 2001, с.44-49) в котором расход измеряют по амплитуде спектральной мощности изменения давления в трубопроводе, предварительно установив в трубопроводе сужающее устройство специальной формы (свисток), эффективный в условиях измерения расхода с высоким газовым фактором.

К недостаткам второго аналога относятся ограничения области применения способа только газовыми скважинами с небольшим содержанием жидкой фазы.

В водонефтяных эмульсиях с низким газовым фактором способ неприменим из-за полного перекрытия сечения сужающего устройства потоком жидкости. Иными словами «свисток» в жидкости не будет генерировать требуемый для измерений сигнал. Способ не предусматривает измерение физических свойств жидких фаз. например скорости звука или плотности фаз. Наличие сужающего устройства в условиях пескопроявления приводит к износу сопла сужающего устройства и возрастанию погрешностей измерения расхода.

В качестве прототипа выбран способ измерения расхода многофазной жидкости (U.S. 7401530 В2 от Jul. 22 2008 "SONAR BASED MULTIPHASE FLOWMETER") в котором измеряют скорости звука в отдельных фазах движущейся в трубе многофазной жидкости, измеряют скорость распространения волн вдоль трубы, измеряют объемную долю одной из фаз, измеряют среднюю скорость движения многофазной жидкости в трубе, предварительно измеряют плотности каждой из фаз, а затем, на основе предложенных зависимостей рассчитывают объемную или массовую доли каждой фазы. При этом скорость звука используют только как метку появления в трубе какой-либо фазы. полагая. что изменение скорости от концентрации фаз заранее известно. К недостаткам прототипа относятся:

1. Применение устройств для измерения одной фазы многофазного потока, например воды, приводит к появлению дополнительных погрешностей измерения расхода. Появление погрешностей обусловлено самим многофазным потоком, существующим в виде водогазонефтяной эмульсии различной степени дисперсности.

2. Наличие в потоке комбинации гидрофильной и гидрофобной фаз в любом случае приводит к появлению на стенках трубы отложений, негативно влияющих на процесс измерения одной из фаз. Это относится к сенсорам любого типа - магнитным. электрическим, излучающим, ионизирующим (см. п.6-9 указанного патента).

3. В описании способа не приведена математическая зависимость между скоростью потока, скоростями фаз и плотностями фаз.

4. Применение расходомера смеси и отдельно расходомера воды в данном способе избыточно, так как необходимую информацию о движении многофазной жидкости можно получить из акустического сигнала сенсора установленного на трубе,

Для устранения указанных недостатков предлагается данное изобретение. Технический результат: уменьшение погрешности измерения каждой фазы. Технический результат достигается благодаря тому, что в предлагаемом способе измерения расхода многофазной жидкости предусмотрены следующие отличия:

определяют скорость звука и плотность каждой фазы. определяют скорость звука в каждой из фаз жидкости в рабочем диапазоне температур, измеряют и записывают амплитуды колебаний трубы, по которой протекает многофазная жидкость и соответствующие им частоты. Выбирают диапазон частот с максимальными значениями амплитуд. Измеряемый диапазон частот делят на три части, нижние частоты соответствуют газовой фазы. средние - нефтяной и высокие - водяной, в каждой из частей которых после применения быстрых преобразований Фурье [1, 2, 3], выделяют максимальные значения амплитуд, и вычисляют 3 объемный расход каждой фазы жидкости по зависимости:

Q : = π R 4 F 3 A K 4 C 2 ,

где Q - объемный расход отдельной фазы многофазной жидкости, м3/с;

R - радиус трубы, м;

F - максимальная частота вибрации в выделенном для отдельной фазы в диапазоне, 1/с;

А - максимальная амплитуда колебаний на частоте f, м;

К - безразмерный коэффициент пропорциональности, учитывающий особенности протекания многофазной жидкости по трубопроводу при калибровке виброакустического датчика на трубопроводе;

С - скорость звука в измеряемой фазе многофазной жидкости, определенная экспериментально для нефти и газа и табличная для воды.

Пример: Определим точность измерения расхода при изменении частоты на 1 Гц, принимая, что такое изменение точно регистрируется применяемым приборным комплексом, для трех составляющих потока:

Радиус трубы, м:

R:=0.0254

Частота начальная, для газа, нефти и воды соответственно, Гц:

Fg:=250

Foil:=1000

Fw:=1500

Скорость звука для газа, нефти и воды соответственно, м/с:

Cgas:=400

Coil:=1200

Cw:=1500

Амплитуду колебаний условно примем одинаковой для всех составляющих, м:

A:=0.00001

Для расчета примем диапазон частот от 251 до 7500 Гц:

F2:=251…7500

Запишем уравнение расхода для составляющих потока:

Для фазы 1: Q w ( F 2 ) : = π R 4 F 2 3 A 4 C w 2

Для фазы 2: Q o i l ( F 2 ) : = π R 4 F 2 3 A 4 C o i l 2

Для фазы 3: Q g a s ( F 2 ) : = π R 4 F 2 3 A 4 C g a s 2

Влияние расхода на частоту показано на рис.1.

Вычислим разность расходов для нефти при изменении частоты на 1 Гц:

ΔQoil:=Q2(F2)-Q1(F2);

Изменение расхода при изменении частоты на 1 Гц показано на рис.2

Технический результат получен следующим способом.

К компьютеру с программным обеспечением DASYLab - 11 (см. User Manual Data Acquisition, Controlling, and Monitoring "Data Acquisition System Laboratory") подключали пьезоэлектрический микрофон, который в свою очередь крепили к трубопроводу. В программе сигнал усиливается, делится фильтрами на три части, задается частота замера сигнала по Найквисту, каждая часть проходит через свой анализатор спектра, выделенные сигналы проверяются на максимальность амплитуды и подаются на блок математических преобразований, куда вводятся также значения скоростей звука и коэффициент пропорциональности. На выходе получаем или численные значения в таблицы Excel или графические материалы в виде цифрового экрана или двумерного графика.

Экспериментальное исследование: записывали показания приборов (расход, давление, частоту вращения насоса), а также частоту и амплитуду колебаний трубопровода, используя специально изготовленный из трубы диаметром 2 дюйма кольцевой проливочный стенд (рис.3), состоящий из насоса 1, трубопровода 2, расходомера 3, манометра 4 (остальные устройства не показаны). Обработку результатов проводили в программе DASYLab-11 и MathCAD-14.

В качестве многофазной жидкости использовали воду водопроводную, растительное масло и воздух. Использовали эмульсии из 25%, 50%, и 75% смеси масла с водой. Объем воздуха регулировали изменением объема жидкости в проливочном стенде. Пьезоэлектрический микрофон жестко устанавливали на трубе. Замеры проводили при фиксированных значениях температуры +20, +50, +80°С и фиксированных значениях чисел оборотов насоса - 100, 350, 700 об/мин.

Условия проведения эксперимента:

Испытуемая жидкость - водопроводная вода

Температура жидкости: 20°C

Давление: 0,1 МПа

Частота: см. таблица 1

Скорость звука в воде: 1500 м/с

Амплитуда колебаний: 1.03×10-5 м

При проведении экспериментов установлено, что достигаемая точность измерения каждой фазы варьируется от 1·10-9 до 1·10-6 в зависимости от частоты, амплитуды и других параметров. При этом изменение погрешности измерения каждой фазы варьируется от 1·10-9 до 1·10-6 в зависимости от частоты, амплитуды и других параметров.

Таблица 1 Результаты экспериментальных исследований Частота, Гц Расход, м3 1340 3.601Е-09 2457 2,241Е-08 3572 6,847Е-08

Список используемых источников

1. Кристалинский Р.Е., Кристалинский В.Р. Преобразования Фурье и Лапласа в системах компьютерной математики: Учебное пособие для вузов. - М.: Горячая линия - Телеком, 2006. - 216 с.

2. Панферов А.И., Лопарев А.В., Пономарев В.К. Применение MathCAD в инженерных расчетах: Учебное пособие / СПбГУАП. СПб., 2004. 88 с.

3. User Manual Data Acquisition, Controlling, and Monitoring "Data Acquisition System Laboratory"

Похожие патенты RU2489685C2

название год авторы номер документа
СПОСОБ ИЗМЕРЕНИЯ РАСХОДА МНОГОФАЗНОЙ ЖИДКОСТИ 2013
  • Шумилин Сергей Владимирович
  • Шумилин Владимир Николаевич
RU2531036C1
СПОСОБ ИЗМЕРЕНИЯ ДЕБИТА НЕФТЯНЫХ СКВАЖИН НА ГРУППОВЫХ ЗАМЕРНЫХ УСТАНОВКАХ 2013
  • Шумилин Сергей Владимирович
  • Шумилин Владимир Николаевич
  • Филиппов Алексей Валентинович
  • Филиппова Ирина Владимировна
RU2566158C2
СПОСОБ УПРАВЛЕНИЯ НЕФТЕГАЗОВЫМ МЕСТОРОЖДЕНИЕМ 2013
  • Шумилин Сергей Владимирович
  • Шумилин Владимир Николаевич
  • Филиппов Алексей Валентинович
  • Филиппова Ирина Владимировна
RU2558087C2
СПОСОБ УПРАВЛЕНИЯ НЕФТЕГАЗОВОЙ СКВАЖИНОЙ 2013
  • Шумилин Сергей Владимирович
  • Шумилин Владимир Николаевич
  • Филиппов Алексей Валентинович
  • Филиппова Ирина Владимировна
RU2558088C2
СПОСОБ ИЗМЕРЕНИЯ СУММАРНОГО И ФРАКЦИОННОГО РАСХОДОВ НЕСМЕШИВАЮЩИХСЯ СРЕД И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Сараев Сергей Валерьевич
  • Хатьков Виталий Юрьевич
  • Дробышев Андрей Александрович
RU2551480C1
ВИБРАЦИОННЫЙ РАСХОДОМЕР ДЛЯ ОПРЕДЕЛЕНИЯ ОДНОГО ИЛИ НЕСКОЛЬКИХ ПАРАМЕТРОВ МНОГОФАЗНОГО ПРОТЕКАЮЩЕГО ФЛЮИДА 2009
  • Вайнштейн Джоэл
RU2460973C2
СПОСОБ ОПЕРАТИВНОГО ИССЛЕДОВАНИЯ АТМОСФЕРЫ, ЗЕМНОЙ ПОВЕРХНОСТИ И ОКЕАНА 2010
  • Алексеев Сергей Петрович
  • Курсин Сергей Борисович
  • Добротворский Александр Николаевич
  • Бродский Павел Григорьевич
  • Леньков Валерий Павлович
  • Аносов Виктор Сергеевич
  • Чернявец Владимир Васильевич
  • Шалагин Николай Николаевич
  • Зверев Сергей Борисович
  • Жильцов Николай Николаевич
  • Яценко Сергей Владимирович
RU2436134C1
СПОСОБ И УСТРОЙСТВО АКУСТИЧЕСКОГО ИЗМЕРЕНИЯ РАСХОДА ГАЗА 2008
  • Дрейзин Валерий Элезарович
  • Рыжиков Сергей Сергеевич
  • Овсянников Юрий Александрович
  • Поляков Валентин Геннадьевич
RU2396518C2
СПОСОБ ОПРЕДЕЛЕНИЯ РАСХОДА КОМПОНЕНТОВ МНОГОФАЗНОЙ СРЕДЫ 1998
  • Мельников В.И.
  • Дробков В.П.
RU2138023C1
СПОСОБ И УСТРОЙСТВО АКУСТИЧЕСКОГО ИЗМЕРЕНИЯ РАСХОДА ГАЗА 2010
  • Бондарь Олег Григорьевич
  • Дрейзин Валерий Элезарович
  • Брежнева Екатерина Олеговна
  • Рыжиков Сергей Сергеевич
RU2453815C2

Иллюстрации к изобретению RU 2 489 685 C2

Реферат патента 2013 года СПОСОБ ИЗМЕРЕНИЯ РАСХОДА МНОГОФАЗНОЙ ЖИДКОСТИ

Способ измерения расхода многофазной жидкости относится к нефтегазодобывающей области и, в частности, может быть использовано для измерения дебита многофазных потоков эксплуатационных газовых, газоконденсатных и нефтяных скважин. Способ измерения расхода многофазной жидкости заключается в определении скорости звука и плотности каждой фазы, определении скорости звука в каждой из фаз жидкости в рабочем диапазоне температур. При этом измеряют и записывают амплитуды колебаний трубы, по которой протекает многофазная жидкость и соответствующие им частоты. Выбирают диапазон частот с максимальными значениями амплитуд. Измеряемый диапазон частот делят на три части, нижние частоты соответствуют газовой фазе, средние - нефтяной и высокие - водяной, в каждой из частей которых после применения быстрых преобразований Фурье выделяют максимальные значения амплитуд и вычисляют объемный расход каждой фазы жидкости по установленной зависимости. Технический результат - уменьшение погрешности измерения каждой фазы. 3 ил.

Формула изобретения RU 2 489 685 C2

Способ измерения расхода многофазной жидкости, заключающийся в измерении акустического шума, создаваемого движением жидкости при протекании ее через известное сечение, скорость прохождения жидкости определяют по частоте акустических шумов, вызываемых неравномерностью движения жидкости, предварительно измеряют температуру потока и давление в трубе, плотности каждой из фаз, а затем на основе предложенных зависимостей рассчитывают объемную или массовую доли каждой фазы, отличающийся тем, что предварительно определяют скорость звука в каждой из фаз жидкости в рабочем диапазоне температур, измеряют и записывают амплитуды и частоты колебаний трубы, по которой протекает многофазная жидкость, измеряемый диапазон частот делят на части, соответствующие каждой фазе, в каждой из частей после применения быстрых преобразований Фурье, выделяют максимальные значения амплитуд и соответствующие им частоты и вычисляют объемный расход каждой фазы жидкости по формуле
Q = π R 4 F 3 A K 4 C 2 ,
где Q - объемный расход отдельной фазы многофазной жидкости, м3/с;
R - радиус трубы, м;
F - максимальная частота вибрации в выделенном для отдельной фазы в диапазоне, 1/с;
А - максимальная амплитуда колебаний на частоте F, м;
K - безразмерный коэффициент пропорциональности, учитывающий особенности протекания многофазной жидкости по трубопроводу при калибровке виброакустического датчика на трубопроводе;
С - скорость звука в измеряемой фазе многофазной жидкости, определенная экспериментально для нефти и газа и таблично для воды.

Документы, цитированные в отчете о поиске Патент 2013 года RU2489685C2

Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
US 6467358 B1, 22.10.2002
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
RU 2004109828 A, 20.09.2005.

RU 2 489 685 C2

Авторы

Шумилин Сергей Владимирович

Шумилин Владимир Николаевич

Даты

2013-08-10Публикация

2011-09-30Подача