СПОСОБ УПРАВЛЕНИЯ СПЕКТРОМ ПУЧКА ШИРОКОПОЛОСНОГО ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ Российский патент 2013 года по МПК G02F1/01 

Описание патента на изобретение RU2491587C1

Изобретение относится к оптике дальнего инфракрасного (ИК) и терагерцового (ТГц) диапазонов и может найти применение в установках, содержащих широполосные источники ТГц-излучения (нагретое тело, синхротрон, импульсные лазеры), в ТГц плазменной и фурье-спектроскопии проводящей поверхности и тонких слоев на ней, в перестраиваемых фильтрах ТГц-излучения.

Основным способом управления спектром пучка широкополосного ИК-излучения является пропускание пучка через селективный по частоте фильтр. По своему принципу действия оптические фильтры подразделяют на абсорбционные (изготовленные из веществ, имеющих полосы поглощения в пределах спектра пучка), интерференционные (состоящие из прозрачной пластины, поверхность которой содержит многослойное покрытие с чередующимися высоким и низким показателями преломления), отражательные (действие которых основано на спектральной зависимости отражения непрозрачного материала), поляризационные (их применение основано на том, что отраженное объектом излучение частично поляризовано), дисперсные (функционирующие на основе зависимости показателя преломления вещества фильтра от длины волны) [Э. Ангерер. Техника физического эксперимента // М.: Физматлит, 1962. С.317-324]. Интенсивность излучения в пределах полос поглощения изменяют путем изменения расстояния, проходимого излучением в веществе фильтра. Основными недостатками известного способа являются ограниченность диапазона частот, подвергаемого регулировке и определяемого расположением полос поглощения вещества фильтра на оси частот, а также невозможность оперативного управления спектром пучка.

Наиболее близким к заявляемому по технической сущности является способ управления спектром пучка широкополосного ТГц-излучения, включающий размещение на пути пучка селективно поглощающего фильтра, выполненного в виде упорядоченного набора идентичных отверстий в проводящем экране [Melo A.M., Komberg M.A., Kaufmann P. et al. Metal mesh resonant filters for terahertz frequencies // Applied Optics, 2008, v.47, №32, p.6064-6069]. Положением полосы пропускания фильтра на оси частот и шириной полосы управляют формой и размерами отверстий, а также - расстоянием между ними. Основным недостатком известного способа является невозможность оперативного управления амплитудно-частотным спектром пучка.

Технический результат изобретения направлен на обеспечение возможности оперативного управления амплитудно-частотным спектром пучка во всем ТГц-диапазоне.

Технический результат достигается тем, что в способе управления спектром пучка широкополосного ТГц-излучения, включающем размещение на пути пучка селективно поглощающего фильтра, излучению предварительно сообщают линейную поляризацию, согласно изобретению в качестве фильтра используют проводящую поверхность, поляризованное излучение преобразуют в пучок направляемых поверхностью поверхностных плазмонов (ПП), который после пробега ПП расстояния Δx преобразуют в пучок объемных электромагнитных волн (ОЭВ) и достигают искомого амплитудно-частотного распределения гармонических компонент в пучке ОЭВ изменением расстояния Δх.

Оперативность управления амплитудно-частотным спектром пучка во всем ТГц-диапазоне достигается вследствие пропорциональности коэффициента поглощения ПП квадрату частоты излучения при данном расстоянии Δx, пробегаемом ПП [Zhizhin G.N., Yakovlev V.A. Broad-band spectroscopy of surface electromagnetic waves // Physics Reports, 1990, v.194, №5/6, p.281-289]. Изменяя расстояние Δх пробега ПП, можно плавно регулировать амплитудно-частотное распределение гармонических компонент в пучке на выходе фильтра, вплоть до полного подавления нежелательной части спектра.

Изобретение поясняется чертежами: на рис.1 - схема устройства, реализующего способ; на рис.2 - частотные зависимости интенсивности в пучке ТГц-излучения синхротрона до плазменного фильтра и после него при различных расстояниях пробега ПП по границе раздела "золото - воздух".

Предлагаемый способ может быть реализован с использованием устройства, описанного в [Gerasimov V.V., Knyazev B.A., Nikitin A.K., Zhizhin G.N. A way to determine the permittivity of metallized surfaces at terahertz frequencies // Applied Physics Letters, 2011, v.98, 171912] и схема которого приведена на рис.1, где цифрами обозначены: 1 - источник широкополосного излучения; 2 - поляризатор, сообщающий излучению p-поляризацию относительно плоскости падения; 3 - плоское поворотное зеркало; 4 - цилиндрическое зеркало; 5 - проводящая пластина с плоскопараллельными гранями, размещенная на платформе 6; 7 - элемент преобразования излучения источника в ПП; 8 - экран, поглощающий объемное излучение, не преобразованное в ПП; 9 - подвижная платформа, содержащая фиксированные элементы 3, 4, 7 и 8, способная перемещаться вдоль поверхности пластины 5; 10 - фокусирующий объектив.

Способ реализуется следующим образом. Широкополосное излучение источника 1, содержащее непрерывный ряд гармонических компонент, направляют на поляризатор 2, плоскость пропускания которого совпадает с плоскостью падения излучения. Далее линейно поляризованное излучение отражается зеркалом 3 и фокусируется зеркалом 4 на зазор между проводящей пластиной 5, размещенной на платформе 6, и элементом 7, преобразующим объемное излучение в ПП. На выходе элемента 7, наряду с пучком ПП, образуется веер паразитных объемных волн, которые блокируют непрозрачным экраном 8, край которого отстоит от поверхности пластины 5 не менее чем на глубину проникновения поля ПП в окружающую среду. Пучок ПП содержит такой же ряд гармонических компонент, как и излучение источника 1. Распространяясь по пластине 5, гармонические компоненты ПП затухают по экспоненциальному закону со степенным показателем, пропорциональным квадрату частоты данной компоненты. Дойдя до края пластины 5, пучок ПП, в результате дифракции на ребре пластины, трансформируется в пучок объемных электромагнитных волн (ОЭВ) [Агранович В.М. Кристаллооптика поверхностных поляритонов и свойства поверхности // УФН, 1975, т.115, Вып.2, с.199-237]. Расходящийся пучок p-поляризованных ОЭВ коллимируется объективом 10, сфокусированным на край пластины 5. В силу неодинаковости затухания компонент пучка ПП можно оперативно управлять спектром пучка ОЭВ, изменяя расстояние пробега ПП Δх.

В качестве примера применения заявляемого способа рассмотрим возможность управления спектром пучка излучения синхротрона, содержащим непрерывный ряд гармонических компонент в диапазоне частот от 50 см-1 до 700 см-1, что соответствует длинам волн λ от 200 мкм до 14,3 мкм [Кулипанов Г.Н., Скринский А.Н. Использование синхротронного излучения: состояние и перспективы // УФН, 1977, т.122, вып.3, с.369-418]. Для этого в качестве фильтра выберем оптическую поверхность золота, диэлектрическую проницаемость которого будем рассчитывать по модели Друде, полагая столкновительную частоту свободных электронов равной 215 см-1, а плазменную - 72800 см-1 [Ordal М.А., Bell R.J., Alexander R.W., Long L.L., and Querry M.R. Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W // Applied Optics, 1985, v.24(24), p.4493-4499]. Преобразование излучения синхротрона в ПП будем осуществлять волноводным методом, описанным в [Jeon T.-L., Grischkowsky D. THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet // Applied Physics Letters, 2006, V.88, 061113] и позволяющим эффективно реализовывать преобразование во всем ТГц-диапазоне (объемное излучение преобразуется в ТМ-волноводные моды полого металлического волновода, которые, дифрагируя на крае элемента преобразования, частично трансформируются в соответствующие ПП). Кроме того, этот метод позволяет управлять низкочастотной границей спектра пучка ПП, путем изменения величины зазора между элементом преобразования и поверхностью, направляющей ПП (отсечка наинизшей волноводной моды наступает при величине зазора, равной λ/2).

На рис.2 приведены расчетные частотные зависимости интенсивности в пучке ТГц-излучения синхротрона до плазменного фильтра (сплошная линия) и после него при длине пробега ПП Δx по границе раздела "золото - воздух", равной 10 см, 20 см и 50 см. Видно, что при Δх=50 см компоненты с частотами превышающими 600 см-1 ослабляются более чем в 100 раз, в то время как интенсивность компонент с частотами близкими к 200 см-1 ослабляется всего в 2 раза. Перемещая подвижную платформу 9 с укрепленным на ней элементом преобразования излучения источника в ПП, можно оперативно изменять длину пробега пучка ПП, изменяя тем самым соотношение интенсивностей гармонических компонент в пучке ОЭВ на выходе плазменного фильтра. При этом возможна регулировка низкочастотной границы спектра изменением величины зазора между элементом преобразования 7 и поверхностью, направляющей ПП.

Таким образом, рассмотренный пример наглядно демонстрирует возможность оперативного управления амплитудно-частотным спектром пучка широкополосного ТГц-излучения.

Похожие патенты RU2491587C1

название год авторы номер документа
Способ управления спектром пучка широкополосного терагерцевого излучения 2016
  • Никитин Алексей Константинович
  • Князев Борис Александрович
  • Герасимов Василий Валерьевич
RU2625635C1
СПОСОБ ГЕНЕРАЦИИ НЕПРЕРЫВНОГО ШИРОКОПОЛОСНОГО ИНФРАКРАСНОГО ИЗЛУЧЕНИЯ С РЕГУЛИРУЕМЫМ СПЕКТРОМ 2016
  • Никитин Алексей Константинович
  • Хасанов Илдус Шевкетович
  • Та Тху Чанг
RU2642912C1
ПЛАЗМОННЫЙ ФУРЬЕ-СПЕКТРОМЕТР ТЕРАГЕРЦОВОГО ДИАПАЗОНА 2011
  • Жижин Герман Николаевич
  • Кирьянов Анатолий Павлович
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2477842C1
ИНФРАКРАСНЫЙ АМПЛИТУДНО-ФАЗОВЫЙ ПЛАЗМОННЫЙ СПЕКТРОМЕТР 2014
  • Герасимов Василий Валерьевич
  • Князев Борис Александрович
  • Никитин Алексей Константинович
  • Та Тху Чанг
RU2573617C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТОЛЩИНЫ ОДНОРОДНОГО НАНОСЛОЯ В ИНФРАКРАСНОМ ИЗЛУЧЕНИИ 2012
  • Никитин Алексей Константинович
  • Кирьянов Анатолий Павлович
  • Жижин Герман Николаевич
  • Чудинова Галина Константиновна
RU2470257C1
Интерферометр для определения показателя преломления инфракрасной поверхностной электромагнитной волны 2017
  • Никитин Алексей Константинович
  • Князев Борис Александрович
  • Герасимов Василий Валерьевич
  • Хасанов Илдус Шевкетович
RU2653590C1
ИНФРАКРАСНЫЙ АМПЛИТУДНО-ФАЗОВЫЙ ПЛАЗМОННЫЙ СПЕКТРОМЕТР 2010
  • Никитин Алексей Константинович
  • Жижин Герман Николаевич
  • Кирьянов Анатолий Павлович
  • Князев Борис Александрович
  • Хитров Олег Владимирович
RU2477841C2
СПОСОБ ОПРЕДЕЛЕНИЯ НАБЕГА ФАЗЫ МОНОХРОМАТИЧЕСКОЙ ПОВЕРХНОСТНОЙ ЭЛЕКТРОМАГНИТНОЙ ВОЛНЫ ИНФРАКРАСНОГО ДИАПАЗОНА 2012
  • Кирьянов Анатолий Павлович
  • Князев Борис Александрович
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2491522C1
СПОСОБ ОПРЕДЕЛЕНИЯ ГЛУБИНЫ ПРОНИКНОВЕНИЯ ПОЛЯ ТЕРАГЕРЦОВЫХ ПОВЕРХНОСТНЫХ ПЛАЗМОНОВ В ОКРУЖАЮЩУЮ СРЕДУ 2012
  • Князев Борис Александрович
  • Герасимов Василий Валерьевич
  • Никитин Алексей Константинович
RU2491533C1
Интерферометр Майкельсона для определения показателя преломления поверхностных плазмон-поляритонов терагерцевого диапазона 2019
  • Никитин Алексей Константинович
  • Хитров Олег Владимирович
RU2709600C1

Иллюстрации к изобретению RU 2 491 587 C1

Реферат патента 2013 года СПОСОБ УПРАВЛЕНИЯ СПЕКТРОМ ПУЧКА ШИРОКОПОЛОСНОГО ТЕРАГЕРЦОВОГО ИЗЛУЧЕНИЯ

Изобретение относится к оптике дальнего инфракрасного (ИК) и терагерцового (ТГц) диапазонов и может найти применение в установках, содержащих широкополосные источники ТГц-излучения, в ТГц плазменной и фурье-спектроскопии проводящей поверхности и тонких слоев на ней, в перестраиваемых фильтрах ТГц-излучения. Способ управления спектром пучка широкополосного ТГц-излучения включает размещение на пути пучка селективно поглощающего фильтра. При этом излучению сообщают линейную поляризацию, а в качестве фильтра используют проводящую поверхность. Поляризованное излучение преобразуют в пучок направляемых поверхностью поверхностных плазмонов (ПП), который после пробега им макроскопического расстояния по поверхности пластины преобразуют в пучок объемных электромагнитных волн (ОЭВ) и достигают искомого амплитудно-частотного распределения гармонических компонент в пучке ОЭВ изменением расстояния пробега пучка ПП по поверхности пластины. Технический результат заключается в обеспечении возможности оперативного управления амплитудно-частотным спектром пучка во всем ТГц-диапазоне. 2 ил.

Формула изобретения RU 2 491 587 C1

Способ управления спектром пучка широкополосного терагерцового излучения, включающий размещение на пути пучка селективно поглощающего фильтра, отличающийся тем, что излучению сообщают линейную поляризацию, в качестве фильтра используют проводящую поверхность, поляризованное излучение преобразуют в пучок направляемых поверхностью поверхностных плазмонов, который после пробега им макроскопического расстояния по поверхности пластины преобразуют в пучок объемных электромагнитных волн и достигают искомого амплитудно-частотного распределения гармонических компонент в пучке объемных электромагнитных волн изменением расстояния пробега пучка поверхностных плазмонов по поверхности пластины.

Документы, цитированные в отчете о поиске Патент 2013 года RU2491587C1

Gerasimov V.V
и др
"A way to determine the permittivity of metallized surfaces at terahertz frequencies"
Applied Physics Letters, 2011, v.98, p.171912
US 7746550 B2, 29.06.2010
US 6330062 B1, 11.12.2001
СПОСОБ РАЗДЕЛЕНИЯ СОВМЕЩЕННЫХ ПОВЕРХНОСТНОЙ И ОБЪЕМНОЙ ЭЛЕКТРОМАГНИТНЫХ ВОЛН ТЕРАГЕРЦОВОГО ДИАПАЗОНА 2007
  • Никитин Алексей Константинович
  • Жижин Герман Николаевич
  • Никитин Павел Алексеевич
RU2352969C1

RU 2 491 587 C1

Авторы

Жижин Герман Николаевич

Князев Борис Александрович

Никитин Алексей Константинович

Герасимов Василий Валерьевич

Даты

2013-08-27Публикация

2012-02-27Подача