ПОТОЧНАЯ ЛИНИЯ ДЛЯ КРУГЛОГОДИЧНОГО КУЧНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ В КРИОЛИТОЗОНЕ Российский патент 2013 года по МПК E21B43/28 

Описание патента на изобретение RU2493363C1

Техническое решение относится к горной промышленности, а именно к физико-химическим методам обогащения полезных ископаемых, может быть использовано для повышения эффективности круглогодичного кучного выщелачивания благородных металлов в криолитозоне.

Известна поточная линия кучного выщелачивания, включающая систему орошения, заглубленную в рудный штабель, отсыпанный на железобетонной кювете, имеющей борт и снабженной системой дренажа, которая соединена последовательно самотечным трубопроводом с приемной емкостью, буферной емкостью, которая в свою очередь соединена с цементатором и насосом, соединенным напорным трубопроводом с системой орошения (Кучное выщелачивание благородных металлов. / Под ред. М.И. Фазлуллина. - М.: Издательство Академии горных наук. 2001. - стр.525).

Недостатком известного технического решения является невозможность его использования в условиях криолитозоны. Это связано с тем, что верхняя граница много-летнемерзлой толщи пород криолитозоны ограничена слоем сезонного оттаивания-замерзания (0,2÷3,0 м), а нижняя граница может лежать на глубине до 500 м и, местами в Якутии, до 1500 м. Криолитозона занимает более половины территории России. Известная технология кучного выщелачивания благородных металлов не может быть реализована в условиях криолитозоны даже в теплое время года, так как происходит замерзание растворов в приемной и буферной емкостях, в системе орошения и в других гидротехнических сооружениях, сообщающихся с многолетнемерзлой толщей пород криолитозоны. В холодный период происходит полное промерзание рудного штабеля, включая слой сезонного оттаивания.

Наиболее близкой по технической сущности и совокупности существенных признаков к предлагаемому решению является поточная линия для круглогодичного кучного выщелачивания благородных металлов (патент РФ №2298092, Е21В 43/28, опубл. в БИ №12, 2007 г.), включающая рудный штабель, систему дренажа, железобетонную кювету с бортом, последовательно установленные самотечные трубопроводы, буферную емкость, приемную емкость, насос, напорный трубопровод, систему орошения, устройство для осаждения благородных металлов и устройство для доукрепления раствора. Линия снабжена устройством для подогрева раствора, установленным перед системой орошения, и комплексом устройств для сбора и переработки насыщенных растворов, включающим дополнительный самотечный трубопровод, дополнительную буферную емкость, дополнительную приемную емкость, насос, напорный трубопровод и аварийную емкость, установленные последовательно. При этом устройство для осаждения благородных металлов и комплекс устройств для сбора и переработки насыщенных растворов расположены ниже границы сезонного промерзания-оттаивания грунтов. Для работы в зимний период система орошения заглублена в приповерхностный слой рудного штабеля.

Основным недостатком известного устройства является снижение температуры раствора во время технологических перерывов подачи раствора во время его насыщения благородными металлами в рудном штабеле, а также в системе дренажа на контакте с многолетнемерзлой толщей пород криолитозоны. В зимнее время возможно полное промерзание рудного штабеля и замерзание раствора в системе орошения, что снижает надежность и эффективность работы поточной линии круглогодичного кучного выщелачивания благородных металлов.

Техническая задача - повышение надежности и эффективности работы поточной линии круглогодичного кучного выщелачивания благородных металлов в условиях криолитозоны за счет поддержания положительных температур на всем протяжении поточной линии в технологическом процессе выщелачивания путем улучшения термоизоляции рабочей зоны в процессе выщелачивания и подогрева системы орошения горячими газами во время технологических перерывов подачи нагретого раствора в зимнее время.

Поставленная задача решается тем, что поточная линия для круглогодичного кучного выщелачивания благородных металлов в криолитозоне, включающая железобетонную кювету с бортом, отсыпанный на нее рудный штабель, установленную под ним систему дренажа, соединенную с комплексом устройств для работы в летний период, состоящим из последовательно соединенных самотечными трубопроводами буферной емкости и расположенных ниже границы сезонного промерзания-оттаивания грунтов устройства для осаждения благородных металлов, вспомогательного насоса, приемной емкости, которая сообщена с устройством для доукрепления раствора и основным насосом, соединенным напорным трубопроводом с системой орошения, заглубленной в приповерхностный слой рудного штабеля, а также комплекс устройств для работы в зимний период, состоящий из последовательно соединенных дополнительными самотечными трубопроводами и расположенных ниже границы сезонного промерзания-оттаивания грунтов дополнительной буферной емкости, указанного устройства для осаждения благородных металлов, дополнительной приемной емкости, которая сообщена с указанным устройством для доукрепления растворов и дополнительным насосом, соединенным дополнительным напорным трубопроводом через устройство для подогрева раствора с системой орошения, при этом указанное устройство для осаждения благородных металлов сообщено аварийными трубопроводами с аварийной емкостью, дополнительной буферной емкостью и дополнительной приемной емкостью, в соответствии с предлагаемым техническим решением снабжена теплоизолирующим экраном и теплоизолирующим кожухом, которыми система дренажа и указанное технологическое оборудование отделены от многолетнемерзлых пород криолитозоны. Устройство для подогрева раствора имеет замкнутую систему теплоснабжения, которой соединены последовательно водяная рубашка газификатора твердого топлива и водяной котел теплогенератора. Газовые горелки последнего соединены газоходом с газификатором. Отводящий патрубок отработавшего газа теплогенератора соединен газопроводом через распределительную задвижку с системой орошения, имеющей газоотвод в теплоизолирующем покрытии системы орошения на ее дальнем конце.

Установка теплоизолирующего экрана и теплоизолирующего кожуха, которыми система дренажа и указанное технологическое оборудование отделены от многолетне-мерзлых пород криолитозоны позволяет уменьшить тепловые потери подогретого раствора и повысить эффективность круглогодичного процесса кучного выщелачивания за счет поддержания положительной температуры. Одновременно повышается надежность работы указанной поточной линии в зимний период за счет снижения вероятности замерзания раствора.

Оснащение устройства для подогрева раствора замкнутой системой теплоснабжения, которая соединяет последовательно водяную рубашку газификатора твердого топлива и водяной котел теплогенератора, позволяет дополнительно повысить температуру раствора перед подачей его по напорному трубопроводу в систему орошения, что повышает эффективность круглогодичного процесса кучного выщелачивания за счет создания для него благоприятных температурных условий. Одновременно повышается надежность работы указанной поточной линии в зимний период за счет снижения вероятности замерзания раствора.

Соединение газовых горелок теплогенератора с газификатором обеспечивает устойчивое горение газа в нем для дополнительного нагревания раствора, что дополнительно повышает эффективность процесса круглогодичного кучного выщелачивания за счет поддержания оптимальной температуры раствора. Одновременно повышается и надежность работы указанной поточной линии в зимний период за счет снижения вероятности замерзания раствора.

Соединение отводящего патрубка отработавшего газа теплогенератора газопроводом через распределительную задвижку с системой орошения, имеющей газоотвод в теплоизолирующем покрытии системы орошения на дальнем ее конце, позволяет подавать в нее горячий газ для дополнительного нагревания системы орошения при технологических перерывах подачи нагретого раствора в период насыщения раствора благородными металлами в рудном штабеле. Это дополнительно повышает эффективность процесса круглогодичного кучного выщелачивания за счет поддержания оптимальной температуры в системе орошения и в рудном штабеле и одновременно повышается надежность работы указанной поточной линии в зимний период за счет снижения вероятности замерзания раствора.

Целесообразно установить над теплоизолирующим кожухом поточной линии для круглогодичного кучного выщелачивания благородных металлов временное теплоизолирующее сооружение для защиты указанного технологического оборудования от воздействия низких температур и атмосферных осадков в зимнее время.

Это позволяет дополнительно уменьшить тепловые потери подогретого раствора в ней на нагревание атмосферы и повысить эффективность процесса круглогодичного кучного выщелачивания и надежность работы указанной поточной линии в зимний период за счет снижения вероятности замерзания раствора.

Совместное действие описанных выше отличительных признаков позволяет решить поставленную техническую задачу.

Сущность технического решения иллюстрируется на примере схемы размещения технологического оборудования поточной линии для круглогодичного кучного выщелачивания благородных металлов в криолитозоне и чертежом, где показан момент насыщения нагретого раствора благородными металлами в рудном штабеле при одновременной подаче отработавшего горячего газа от отводящего патрубка теплогенератора по газопроводу через открытую распределительную задвижку в систему орошения с выходом остывшего газа в атмосферу через газоотвод в теплоизолирующем покрытии системы орошения на ее дальнем конце. Направление подачи газов показано на чертеже штрихпунктирной линией.

Поточная линия для круглогодичного кучного выщелачивания благородных металлов в криолитозоне (далее - поточная линия) включает железобетонную кювету 1 с бортом 2, отсыпанный на нее рудный штабель 3, установленную под ним систему 4 дренажа, соединенную с комплексом устройств для работы в летний период (на чертеже связь устройств в этом комплексе показана пунктирными стрелками), который состоит из последовательно соединенных самотечными трубопроводами 5 буферной емкости 6, устройства 7 для осаждения благородных металлов, расположенного ниже границы 8 сезонного промерзания-оттаивания грунтов, вспомогательного насоса 9, расположенного ниже границы 8 сезонного промерзания-оттаивания грунтов, приемной емкости 10, расположенной ниже границы 8 сезонного промерзания-оттаивания грунтов, которая сообщена с устройством 11 для доукрепления раствора и основным насосом 12, соединенным напорным трубопроводом 13 с системой 14 орошения, заглубленной в приповерхностный слой рудного штабеля 3, а также комплекс устройств для работы в зимний период (на чертеже связь устройств в этом комплексе показана сплошными стрелками), который состоит из последовательно соединенных дополнительными самотечными трубопроводами 15 и расположенных ниже границы 8 сезонного промерзания-оттаивания грунтов дополнительной буферной емкости 16, устройства 7 для осаждения благородных металлов, дополнительной приемной емкости 17, которая сообщена с устройством 11 для доукрепления раствора и дополнительным насосом 18, соединенным дополнительными напорными трубопроводами 19 через устройство 20 для подогрева раствора с системой 14 орошения. Устройство 7 для осаждения благородных металлов сообщено аварийными трубопроводами 21 с аварийной емкостью 22, дополнительной буферной емкостью 16 и дополнительной приемной емкостью 17. Система 4 дренажа и указанное технологическое оборудование отделены от многолетнемерзлых пород 23 криолитозоны теплоизолирующим экраном 24 и теплоизолирующим кожухом 25. Устройство 20 для подогрева раствора имеет замкнутую систему 26 теплоснабжения, которой соединены последовательно водяная рубашка 27 газификатора 28 твердого топлива и водяной котел 29 теплогенератора 30, газовые горелки 31 которого соединены газоходом 32 с газификатором 28 (на чертеже связь устройств показана штрих-пунктирными стрелками), а отводящий патрубок 33 отработавшего газа теплогенератора 30 соединен газопроводом 34 через распределительную задвижку 35 с системой 14 орошения, имеющей газоотвод 36 в теплоизолирующем покрытии 37 системы 14 орошения на дальнем ее конце.

Поточная линия работает следующим образом.

В летний период задействуют комплекс устройств для работы в летний период. Над теплоизолирующим экраном 24 и теплоизолирующим кожухом 25 производят монтаж системы 4 дренажа и самотечных трубопроводов 5, железобетонной кюветы 1 с бортом 2, затем производят отсыпку рудного штабеля 3 и на сформированную поверхность рудного штабеля 3 укладывают систему 14 орошения. Выщелачивающий раствор (далее - раствор) из системы 14 орошения поступает в рудный штабель 3. После инфильтрации насыщенный раствор по системе 4 дренажа собирается у борта 2 железобетонной кюветы 1 и по самотечному трубопроводу 5 поступает в буферную емкость 6 и далее в устройство 7 для осаждения благородных металлов. После отсадки благородных металлов, при помощи вспомогательного насоса 9, раствор подается в приемную емкость 10, где при помощи устройства 11 для доукрепления раствора восстанавливается концентрация цианида и гидрооксида натрия в растворе. При помощи основного насоса 12 по напорному трубопроводу 13 раствор вновь подается в систему 14 орошения, установленную на рудном штабеле 3.

В зимний период задействуют комплекс устройств для работы в зимний период. Над теплоизолирующим экраном 24 и теплоизолирующим кожухом 25 производят монтаж системы 4 дренажа, дополнительных самотечных трубопроводов 15, железобетонной кюветы 1 с бортом 2, затем производят отсыпку рудного штабеля 3. На сформированную поверхность рудного штабеля 3 укладывают систему 14 орошения с газоотводом 36 на дальнем ее конце и теплоизолирующее покрытие 37 системы 14 орошения. Затем запускают в работу газификатор 28 твердого топлива и теплогенератор 30, в газовые горелки 31 которого по газоходу 32 поступает синтез-газ от газификатора 28 твердого топлива. Отработавший горячий газ теплогенератора 30 направляется через отводящий патрубок 33 по газопроводу 34 через открытую распределительную задвижку 35 в систему 14 орошения. Через 1÷3 часа система 14 орошения нагревается до положительной температуры (+15÷18°C°). Охлажденный газ на дальнем конце системы 14 орошения по газоотводу 36 выходит в атмосферу. В указанный период времени в устройстве 20 для подогрева раствора, снабженном замкнутой системой 26 теплоснабжения, которой соединены последовательно водяная рубашка 27 газификатора 28 твердого топлива и водяной котел 29 теплогенератора, нагревается раствор (до температуры +15÷48°C°). Распределительную задвижку 35 перекрывают и отработавший газ теплогенератора 30 направляют напрямую в атмосферу. Подогретый раствор дополнительным насосом 18 через дополнительный напорный трубопровод 19 подают в систему 14 орошения. Происходит инфильтрация раствора в рудный штабель 3 и его насыщение благородными металлами. При достижении количеством раствора в системе 14 орошения предела, необходимого для его полной инфильтрации в рудный штабель 3, производят технологический перерыв в подаче нагретого раствора для достаточного насыщения раствора благородными металлами в рудном штабеле 3. По продолжительности он может составлять в зависимости от технологических свойств руды 3÷16 суток. Насыщенный благородными металлами раствор по системе 4 дренажа стекает к борту 2 железобетонной кюветы 1, затем по дополнительному самотечному трубопроводу 15 поступает в дополнительную буферную емкость 16 и далее в устройство 7 для осаждения благородных металлов, из которого обедненный раствор поступает в дополнительную приемную емкость 17, где посредством устройства 11 для доукрепления раствора восстанавливается концентрация цианида и гидрооксида натрия в растворе. Во время технологического перерыва по газопроводу 34 через открытую распределительную задвижку 35 в систему 14 орошения подают отработавший газ от теплогенератора 30. Это позволяет поддерживать в системе 14 орошения и в рудном штабеле 3 положительную температуру (+15÷18°C°). Охлажденный газ по газоотводу 36 на дальнем конце системы 14 орошения выходит в атмосферу. За период технологического перерыва в дополнительной приемной емкости 17 скапливается раствор. Излишки раствора поступают в аварийную емкость 22, сообщенную аварийными трубопроводами 21 с дополнительной буферной емкостью 16, устройством 7 для осаждения благородных металлов и дополнительной приемной емкостью 17. После завершения технологического перерыва распределительную задвижку 35 перекрывают и отработавший газ теплогенератора 30 направляют напрямую в атмосферу. Раствор вновь подают дополнительным насосом 18 по дополнительному напорному трубопроводу 19 через устройство 20 для подогрева раствора в систему 14 орошения, и технологический цикл повторяется. Так как технологическое оборудование отделено от многолетнемерзлых пород 23 криолитозоны теплоизолирующим кожухом 25, то теплопотери в этом направлении минимальны. Положительная температура (+15÷18°C°) в рабочей зоне указанного технологического оборудования над теплоизолирующим кожухом 25 поддерживается притоком тепла от замкнутой системы 26 теплоснабжения, соединенной с водяной рубашкой 27 газификатора 28 твердого топлива и с водяным котлом 29 теплогенератора 30.

Таким образом, поточная линия позволяет обеспечить надежную и эффективную работу при круглогодичном кучном выщелачивании благородных металлов в летнее и зимнее время.

Временное теплоизолирующее сооружение 38 позволяет дополнительно уменьшить тепловые потери подогретого раствора в дополнительных самотечных трубопроводах 15, дополнительном напорном трубопроводе 19 и снизить затраты тепла системы 26 теплоснабжения на нагревание атмосферы, оттаивание снега и льда, чем достигается дополнительное повышение эффективности процесса круглогодичного кучного выщелачивания при более низких температурах в зимний период, а также дополнительно повышается надежность работы указанного технологического оборудования за счет снижения вероятности замерзания раствора.

В целом представленная поточная линия позволяет решить проблему эффективного всесезонного обогащения бедных руд благородных металлов на месте их залегания в районах распространения многолетнемерзлых пород криолитозоны и обеспечить надежную и безаварийную работу указанного технологического оборудования.

Похожие патенты RU2493363C1

название год авторы номер документа
ПОТОЧНАЯ ЛИНИЯ ДЛЯ КРУГЛОГОДИЧНОГО КУЧНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ 2005
  • Шестернев Дмитрий Михайлович
  • Мязин Виктор Петрович
  • Татауров Сергей Борисович
RU2298092C2
ПОТОЧНАЯ ЛИНИЯ ДЛЯ КРУГЛОГОДИЧНОГО КУЧНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ РУД 2012
  • Мязин Виктор Петрович
  • Шестернев Дмитрий Михайлович
  • Секисов Артур Геннадиевич
  • Топсиев Александр Петрович
  • Баянов Алексей Евгеньевич
  • Субботин Михаил Юрьевич
  • Шекиладзе Валерий Тариелович
  • Поляков Олег Анатольевич
  • Карасев Константин Иванович
RU2493364C1
ЛИНИЯ ДЛЯ КУЧНОГО КРИОВЫЩЕЛАЧИВАНИЯ ЗОЛОТОСОДЕРЖАЩЕГО СЫРЬЯ 2013
  • Татауров Сергей Борисович
RU2569607C2
Способ кучного выщелачивания золота из бедных руд в условиях криолитозоны 2019
  • Каймонов Михаил Васильевич
  • Киселев Валерий Васильевич
  • Попов Владимир Иванович
RU2728047C1
ВЫЩЕЛАЧИВАЮЩИЙ УЗЕЛ УСТАНОВКИ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ В ЗОНЕ МНОГОЛЕТНЕЙ МЕРЗЛОТЫ (ВАРИАНТЫ) 2010
  • Ухов Николай Васильевич
  • Пещеров Максим Николаевич
RU2448244C1
СИСТЕМА ДЛЯ ИЗУЧЕНИЯ ТЕХНОЛОГИЧЕСКИХ ПАРАМЕТРОВ ВЫЩЕЛАЧИВАНИЯ РУД ПРИ НИЗКИХ ТЕМПЕРАТУРАХ 2022
  • Мязин Виктор Петрович
  • Бабелло Виктор Анатольевич
  • Соколова Екатерина Сергеевна
  • Лапоног Владислав Вячеславович
RU2803877C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ РУД 2004
  • Рашкин Анатолий Васильевич
  • Авдеев Павел Борисович
  • Резник Юрий Николаевич
  • Шумилова Лидия Владимировна
  • Яшкин Игорь Алексеевич
RU2283879C2
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА ИЗ ОКИСЛЕННЫХ И СМЕШАННЫХ РУД 2007
  • Шумилова Лидия Владимировна
  • Резник Юрий Николаевич
  • Зыков Николай Васильевич
  • Добромыслов Юрий Павлович
  • Конарева Татьяна Геннадьевна
RU2361076C1
КОМБИНИРОВАННЫЙ ГЕОТЕХНОЛОГИЧЕСКИЙ СПОСОБ ОТРАБОТКИ МЕСТОРОЖДЕНИЙ РУД МЕТАЛЛОВ 2006
  • Гребнев Геннадий Сергеевич
  • Заболоцкий Александр Иванович
  • Савеня Николай Васильевич
  • Суклета Сергей Александрович
  • Криницын Александр Павлович
  • Заболоцкий Константин Александрович
RU2348800C2
СПОСОБ ЦИАНИДНОГО ВЫЩЕЛАЧИВАНИЯ ЗОЛОТА В ШТАБЕЛЯХ РУДЫ 2004
  • Рубцов Юрий Иванович
  • Павлов Петр Михайлович
RU2268317C2

Иллюстрации к изобретению RU 2 493 363 C1

Реферат патента 2013 года ПОТОЧНАЯ ЛИНИЯ ДЛЯ КРУГЛОГОДИЧНОГО КУЧНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ В КРИОЛИТОЗОНЕ

Изобретение относится к горной промышленности, а именно к физико-химическим методам обогащения полезных ископаемых. Поточная линия для круглогодичного кучного выщелачивания благородных металлов в криолитозоне включает железобетонную кювету с бортом, отсыпанный на нее рудный штабель, установленную под ним систему дренажа, соединенную с комплексом устройств для работы в летний период, состоящим из последовательно соединенных самотечными трубопроводами буферной емкости и расположенных ниже границы сезонного промерзания-оттаивания грунтов устройства для осаждения благородных металлов, вспомогательного насоса, приемной емкости, которая сообщена с устройством для доукрепления раствора и основным насосом, соединенным напорным трубопроводом с системой орошения, заглубленной в приповерхностный слой рудного штабеля, а также комплекс устройств для работы в зимний период, состоящий из последовательно соединенных дополнительными самотечными трубопроводами и расположенных ниже границы сезонного промерзания-оттаивания грунтов дополнительной буферной емкости, указанного устройства для осаждения благородных металлов, дополнительной приемной емкости, которая сообщена с указанным устройством для доукрепления растворов и дополнительным насосом, соединенным дополнительным напорным трубопроводом через устройство для подогрева раствора с системой орошения. Указанное устройство для осаждения благородных металлов сообщено аварийными трубопроводами с аварийной емкостью, дополнительной буферной емкостью и дополнительной приемной емкостью. Линия снабжена теплоизолирующим экраном и теплоизолирующим кожухом, которыми система дренажа и указанное технологическое оборудование отделены от многолетнемерзлых пород криолитозоны. Причем устройство для подогрева раствора имеет замкнутую систему теплоснабжения, которой соединены последовательно водяная рубашка газификатора твердого топлива и водяной котел теплогенератора, причем газовые горелки последнего соединены газоходом с газификатором, при этом отводящий патрубок отработавшего газа теплогенератора соединен газопроводом через распределительную задвижку с системой орошения, имеющей газоотвод в теплоизолирующем покрытии системы орошения на ее дальнем конце. Изобретение позволяет повысить надежность и эффективность работы поточной линии круглогодичного кучного выщелачивания благородных металлов в условиях криолитозоны за счет поддержания положительных температур на всем протяжении поточной линии в технологическом процессе выщелачивания путем улучшения термоизоляции рабочей зоны в процессе выщелачивания и подогрева системы орошения горячими газами во время технологических перерывов подачи нагретого раствора в зимнее время. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 493 363 C1

1. Поточная линия для круглогодичного кучного выщелачивания благородных металлов в криолитозоне, включающая железобетонную кювету с бортом, отсыпанный на нее рудный штабель, установленную под ним систему дренажа, соединенную с комплексом устройств для работы в летний период, состоящим из последовательно соединенных самотечными трубопроводами буферной емкости и расположенных ниже границы сезонного промерзания-оттаивания грунтов устройства для осаждения благородных металлов, вспомогательного насоса, приемной емкости, которая сообщена с устройством для доукрепления раствора и основным насосом, соединенным напорным трубопроводом с системой орошения, заглубленной в приповерхностный слой рудного штабеля, а также комплекс устройств для работы в зимний период, состоящий из последовательно соединенных дополнительными самотечными трубопроводами и расположенных ниже границы сезонного промерзания-оттаивания грунтов дополнительной буферной емкости, указанного устройства для осаждения благородных металлов, дополнительной приемной емкости, которая сообщена с указанным устройством для доукрепления растворов и дополнительным насосом, соединенным дополнительным напорным трубопроводом через устройство для подогрева раствора с системой орошения, при этом указанное устройство для осаждения благородных металлов сообщено аварийными трубопроводами с аварийной емкостью, дополнительной буферной емкостью и дополнительной приемной емкостью, отличающаяся тем, что она снабжена теплоизолирующим экраном и теплоизолирующим кожухом, которыми система дренажа и указанное технологическое оборудование отделены от многолетнемерзлых пород криолитозоны, причем устройство для подогрева раствора имеет замкнутую систему теплоснабжения, которой соединены последовательно водяная рубашка газификатора твердого топлива и водяной котел теплогенератора, причем газовые горелки последнего соединены газоходом с газификатором, при этом отводящий патрубок отработавшего газа теплогенератора соединен газопроводом через распределительную задвижку с системой орошения, имеющей газоотвод в теплоизолирующем покрытии системы орошения на ее дальнем конце.

2. Поточная линия по п.1, отличающаяся тем, что над теплоизолирующим кожухом имеется временное теплоизолирующее сооружение для защиты указанного технологического оборудования от воздействия низких температур и атмосферных осадков в зимнее время.

Документы, цитированные в отчете о поиске Патент 2013 года RU2493363C1

ПОТОЧНАЯ ЛИНИЯ ДЛЯ КРУГЛОГОДИЧНОГО КУЧНОГО ВЫЩЕЛАЧИВАНИЯ БЛАГОРОДНЫХ МЕТАЛЛОВ 2005
  • Шестернев Дмитрий Михайлович
  • Мязин Виктор Петрович
  • Татауров Сергей Борисович
RU2298092C2
Способ выщелачивания полезных компонентов из руд 1976
  • Баранов В.М.
  • Долгих П.Ф.
  • Потапов В.П.
  • Бубнов В.К.
  • Лущенко И.К.
  • Капканщиков А.М.
  • Нерлов В.А.
SU628737A1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ПРИ ОТРИЦАТЕЛЬНЫХ ТЕМПЕРАТУРАХ ОКРУЖАЮЩЕЙ СРЕДЫ 1993
  • Хабиров Валерий Валиевич
  • Воробьев Александр Егорович
  • Забельский Валерий Константинович
  • Чекушина Татьяна Владимировна
RU2057920C1
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ В УСЛОВИЯХ МНОГОЛЕТНЕЙ МЕРЗЛОТЫ 2000
  • Васильев П.Н.
  • Якупов В.С.
  • Зубков В.П.
RU2183743C2
СПОСОБ КУЧНОГО ВЫЩЕЛАЧИВАНИЯ МЕТАЛЛОВ ИЗ МЕРЗЛЫХ ПОРОД 2003
  • Якупов В.С.
  • Якупов М.В.
  • Якупов С.В.
RU2249103C1
US 4348056 A, 07.09.1982.

RU 2 493 363 C1

Авторы

Опарин Виктор Николаевич

Тапсиев Александр Петрович

Секисов Артур Геннадьевич

Кондратьев Сергей Александрович

Усков Владимир Александрович

Артеменко Юрий Васильевич

Ростовцев Виктор Иванович

Мязин Виктор Петрович

Шестернев Дмитрий Михайлович

Резник Юрий Николаевич

Шумилова Лидия Владимировна

Шемякина Елена Николаевна

Баянов Алексей Евгеньевич

Даты

2013-09-20Публикация

2012-01-10Подача