Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. В настоящее время решение проблемы обеспечения требуемых параметров жесткости, прочности и массы рабочих лопаток в основном достигается использованием роторов в моноблоке с лопатками. Существенными недостатками таких конструкций являются высокая стоимость изготовления, низкий процент выхода готовой продукции, практически непреодолимые технологические трудности при изготовлении крупногабаритных изделий (лопаток вентиляторов современных двигателей), низкая ремонтопригодность и трудности с доводкой лопаток при появлении на лопатках в эксплуатации нерасчетных вынужденных высокочастотных колебаний или автоколебаний типа флаттера.
Таким образом, известное направление разработок является неэкономичным. Поэтому создание конструкций отдельно выполненных рабочих лопаток, соединенных с ротором традиционными способами, остается актуальным.
Комплексное решение проблемы обеспечения требуемых параметров жесткости, прочности и массы рабочих лопаток современных турбомашин (особенно лопаток вентиляторов) достигается использованием композиционных материалов. Однако основной проблемой лопаток из слоистых композитных материалов является их низкая сдвиговая прочность. Снизить сдвиговые напряжения в зоне концентрации можно двумя решениями:
- увеличением ширины хвостовика лопатки;
- размещением хвостовика лопатки на меньшем радиусе диска ротора.
В обоих случаях появляется трудно разрешимая проблема размещения
лопаток в диске, не позволяющая спроектировать диск ротора с достаточной несущей способностью.
Известна лопасть, закрепленная в ступице вентилятора (патент РФ №2172434, F04D 29/02, 29/34). Лопасть изготовлена из композиционного материала на основе пластика с усиливающими волокнами. Основание лопасти содержит металлическое кольцо со средствами для крепления лопасти ротора к ступице. Отверстие кольца имеет площадь поперечного сечения, увеличивающуюся в направлении периферии лопатки. В отверстии кольца расположен жесткий усиливающий элемент. Причем композиционный материал заходит в кольцо, а усиливающие волокна в основании лопатки ротора проходят в отверстии кольца между усиливающим элементом и стенкой отверстия, по существу, параллельно ей. Изобретение позволяет достичь высокой эксплуатационной надежности. Однако конструкция увеличивает поперечный размер хвостовика лопатки, что не позволяет спроектировать диск ротора с достаточной несущей способностью.
Известен узел, состоящий из корневой части композитной лопатки и ротора (патент US №5573 377, Nov, 12, 1996). Узел имеет замок, содержащий корневую часть лопатки, установленную в прорези ротора. В замке между стенкой прорези и стенкой корневой части лопатки со стороны, противоположной приложению нагрузки, выполнен зазор, зависящий от заданной величины центробежной силы, действующей на лопатку при работе узла. Этот зазор позволяет контактировать стенке корневой части лопатки со стенкой прорези ротора в месте приложения нагрузки. Конструкция обеспечивает комплексное решение проблемы требуемых параметров жесткости, прочности и массы рабочих лопаток современных турбомашин (особенно лопаток вентиляторов). Однако остается нерешенной проблема низкой сдвиговой прочности лопаток из слоистых композитных материалов.
Наиболее близким аналогом, выбранным за прототип, является лопатка осевой лопаточной машины, содержащая профилированное перо, комлевую часть и хвостовик типа «ласточкин хвост» (патент US 4045149А, МПК F01D 5/30, 1977). Лопатка выполнена из ориентированных слоев композиционного материала, соединенных между собой связующим материалом. Хвостовик изготовлен с боковыми контактными поверхностями, вогнутыми с каждой стороны в тело лопатки, ограниченными выпуклой поверхностью, расположенной внизу хвостовика, а в верхней части соединенными через боковые поверхности комлевой части с профилированными поверхностями пера. Боковые контактные поверхности хвостовика выполнены криволинейно вогнутыми в тело лопатки вдоль ее продольной оси и едины с боковыми поверхностями комлевой части лопатки.
Лопатка прототипа может быть использована в лопаточных машинах больших диаметров, например в рабочих колесах осевых вентиляторов. Это позволяет уменьшить общий вес вентиляторов, но снижает надежность их длительной работы со знакопеременными нагрузками из-за образования в области перехода от комлевой части лопатки к хвостовику зоны концентрации напряжений, превышающих в несколько раз предел сдвиговой прочности композитного материала.
В основу изобретения положено решение следующих задач:
- уменьшение напряженности лопатки в зоне перехода пера в хвостовик;
- повышение прочности лопатки;
- снижение сдвиговых напряжений в хвостовике лопатки.
Необходимыми условиями выполнения поставленных задач являются повышение жесткости и прочности композиционного материала лопатки в направлениях предполагаемых нагрузок.
Поставленные задачи решаются тем, что лопатка осевой лопаточной машины содержит профилированное перо, комлевую часть и хвостовик типа «ласточкин хвост». Лопатка выполнена из ориентированных слоев композиционного материала, соединенных между собой связующим материалом. Хвостовик изготовлен с боковыми контактными поверхностями, вогнутыми с каждой стороны в тело лопатки, ограниченными выпуклой поверхностью расположенной внизу хвостовика. В верхней части контактные поверхности соединены через боковые поверхности комлевой части с профилированными поверхностями пера.
В соответствии с изобретением боковые контактные поверхности хвостовика выполнены криволинейными как части наружной или внутренней поверхности тора, а нижняя выпуклая поверхность хвостовика - в виде части поверхности тора.
Форма боковых профилированных поверхностей пера лопатки определяется аэродинамическим расчетом и отрабатывается на моделях и стендах.
Для конкретной лопаточной машины форма криволинейных поверхностей комлевой части лопатки (вогнутая, выпуклая или вогнуто-выпуклая) выявляется после задания форм поверхностей пера и контактных поверхностей хвостовика лопатки.
Существенные признаки заявленного технического решения позволяют получить следующий технический результат:
- выполнение боковых контактных поверхностей хвостовика криволинейно вогнутыми в тело лопатки как части наружной или внутренней поверхности тора (двойная криволинейность поверхностей) позволяет уменьшить напряженность лопатки в зоне перехода комлевой части в хвостовик за счет увеличения площади контактных поверхностей;
- при соединении пера с хвостовиком через комлевую часть, где боковые поверхности комлевой части и боковые контактные поверхности хвостовика выполнены едиными, обеспечивается плавный изгиб волокон композиционного материала, что повышает прочность лопатки за счет увеличения допустимых центробежных нагрузок, воздействующих на волокна;
- при ограничении боковых контактных поверхностей хвостовика внизу выпуклой поверхностью в виде части поверхности тора обеспечивается снижение сдвиговых напряжений в хвостовике за счет увеличения суммарной площади поверхностей сдвига между слоями композиционного материала хвостовика.
Таким образом, решены поставленные в изобретении задачи:
- уменьшена напряженность лопатки в зоне перехода пера в хвостовик;
- повышена прочность лопатки;
- снижены сдвиговые напряжения в хвостовике.
Настоящее изобретение поясняется подробным описанием конструкции и работы композиционной лопатки со ссылкой на фиг.1-4, где:
на фиг.1 изображен диск ротора прототипа лопаточной машины с установленной в нем лопаткой;
на фиг.2 - хвостовик заявляемой лопатки с боковыми контактными поверхностями как частями наружной или внутренней поверхностей тора и нижней выпуклой поверхностью в виде части поверхности тора в аксонометрической проекции;
на фиг.3 - схематически поперечное сечение Б-Б хвостовика заявляемой лопатки на фиг.2;
на фиг.4 - график оптимизации формы конкретной лопатки вентилятора ТРДД с заявляемым хвостовиком по критерию сдвиговой прочности, где ось абсцисс - значения радиусов кривизны контактных поверхностей хвостовика, ось ординат - значения максимальных сдвиговых напряжений в лопатке.
Лопатка 1 (см. фиг.1, 2) осевой лопаточной машины содержит профилированное перо 2, комлевую часть 3 и хвостовик 4 типа «ласточкин хвост». Лопатка 1 выполнена из ориентированных слоев композиционного материала 5 (см. фиг.3), соединенных между собой связующим материалом (не показано). Хвостовик 4 изготовлен с боковыми контактными поверхностями 6 и 7 как части наружной или внутренней поверхности тора с каждой стороны лопатки 1. Боковые поверхности 6 и 7 ограничены поверхностью 8 в виде части поверхности тора, расположенной внизу хвостовика 4, а в верхней части соединены через боковые поверхности 9 и 10 комлевой части 3 с профилированными поверхностями 11 и 12 пера 2.
Композиционный материал может быть выполнен, например, из:
- боропластика;
- углепластика на основе высокомодульных волокон;
- из полимера, армированного волокнами карбида кремния.
Для сборки лопатки 1 в матрицу пресс-формы (не показано) помещают предварительно подготовленный по форме лопатки композиционный материал 5, выполненный из ориентированных слоев, пропитанных связующим материалом. Матрицу накрывают ответным пуансоном и подвергают силовому, температурному и временному воздействию для получения готовой лопатки. Полученная композиционная лопатка 1 становится монолитной.
Использование легких, высокопрочных и волокнистых высокомодульных материалов в конструкции вентиляторов ГТД обеспечивает существенное снижение веса двигателя. Композиционный материал получает максимально высокие механические свойства в процессе придания лопатке сложной аэродинамической формы. Кроме того, композиционные лопатки имеют высокую жесткость при вращении вентилятора, повышенный срок службы, обеспечивают отказ от бандажных полок лопаток и уменьшение радиальных зазоров в лопаточных машинах.
При работе лопаточной машины, например вентилятора осевого ТРД, на лопатку воздействуют центробежные нагрузки и изгибающие газовые нагрузки, которые максимальны на взлетном режиме. Работоспособность лопатки определяется в основном центробежными нагрузками, которые передаются через контактные поверхности хвостовика на диск.
название | год | авторы | номер документа |
---|---|---|---|
РАБОЧЕЕ КОЛЕСО ВТОРОЙ СТУПЕНИ РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2603383C1 |
РАБОЧЕЕ КОЛЕСО ТРЕТЬЕЙ СТУПЕНИ РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2603384C1 |
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2611497C1 |
РОТОРНЫЙ УЗЕЛ ДЛЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ | 2009 |
|
RU2439337C2 |
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2603380C1 |
ЛОПАТКА ОСЕВОГО КОМПРЕССОРА | 2001 |
|
RU2210009C1 |
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2603377C1 |
РАБОЧЕЕ КОЛЕСО РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2603379C1 |
РАБОЧЕЕ КОЛЕСО ПЕРВОЙ СТУПЕНИ РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ (ВАРИАНТЫ) | 2015 |
|
RU2603382C1 |
РАБОЧЕЕ КОЛЕСО ЧЕТВЁРТОЙ СТУПЕНИ РОТОРА КОМПРЕССОРА НИЗКОГО ДАВЛЕНИЯ ТУРБОРЕАКТИВНОГО ДВИГАТЕЛЯ | 2015 |
|
RU2612282C1 |
Изобретение относится к области лопаточных машин, в частности к конструкции композиционных лопаток осевых вентиляторов и компрессоров авиадвигателей. Лопатка лопаточной машины содержит профилированное перо, комлевую часть, а также хвостовик типа «ласточкин хвост» и выполнена из ориентированных слоев композиционного материала, соединенных между собой связующим материалом. Хвостовик изготовлен с боковыми контактными поверхностями, вогнутыми с каждой стороны в тело лопатки. Боковые контактные поверхности хвостовика выполнены криволинейными как части наружной или внутренней поверхности тора и ограничены расположенной внизу хвостовика выпуклой поверхностью в виде части поверхности тора. В верхней части боковые контактные поверхности хвостовика соединены через боковые поверхности комлевой части с профилированными поверхностями пера. Изобретение позволяет уменьшить напряженность лопатки в зоне перехода пера в хвостовик, повысить прочность лопатки и снизить сдвиговые напряжения в хвостовике лопатки. 4 ил.
Лопатка осевой лопаточной машины, содержащая профилированное перо, комлевую часть и хвостовик типа «ласточкин хвост», выполненная из ориентированных слоев композиционного материала, соединенных между собой связующим материалом, где хвостовик изготовлен с боковыми контактными поверхностями, вогнутыми с каждой стороны в тело лопатки, ограниченными выпуклой поверхностью, расположенной внизу хвостовика, а в верхней части соединенными через боковые поверхности комлевой части с профилированными поверхностями пера, отличающаяся тем, что боковые контактные поверхности хвостовика выполнены криволинейными как части наружной или внутренней поверхности тора, а нижняя выпуклая поверхность хвостовика - в виде части поверхности тора.
US 4045149 A, 30.08.1977 | |||
СПОСОБ ВЫПЛАВКИ СТАЛИ В КОНВЕРТЕРЕ | 2006 |
|
RU2317338C1 |
Способ приготовления лака | 1924 |
|
SU2011A1 |
US 3891351 A, 24.06.1975 | |||
US 5573377 A, 12.11.1996 | |||
КОМПОЗИТНАЯ ОБЛЕГЧЕННАЯ ЛОПАТКА ПРЕИМУЩЕСТВЕННО ДЛЯ ВЕНТИЛЯТОРОВ АВИАЦИОННЫХ ДВИГАТЕЛЕЙ | 2008 |
|
RU2384750C1 |
Авторы
Даты
2013-10-10—Публикация
2012-01-13—Подача