СПОСОБ ТЕПЛОСЪЕМА С ПОВЕРХНОСТИ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ Российский патент 2013 года по МПК F28F13/12 

Описание патента на изобретение RU2495347C1

Изобретение относится к энергетике и может быть использовано в теплогенерирующих устройствах, например, в ядерных энергетических установках.

Одним из путей повышения энергонапряженности реакторных установок (РУ) и различных теплопередающих устройств является использование средств интенсификации теплосъема. Использование средств интенсификации позволяет увеличить критический тепловой поток и, соответственно, критическую мощность реакторной установки (РУ) (запасы до кризиса теплоотдачи). Последнее позволяет также увеличить удельную мощность реакторной установки. Наиболее распространенные способы интенсификации теплосъема, используемые в ТВС - турбулизация и закрутка потока. (Кириллов П.Л., Юрьев Ю.С., Бобков В.П. Справочник по теплогидравлическим расчетам (ядерные реакторы, теплообменники, парогенераторы). М.: Энергоатомиздат, 1990 г. с.320-323).

Недостаток способов интенсификации теплосъема с помощью турбулизации потока заключается в увеличении гидравлического сопротивления потоку теплоносителя.

Наиболее близким по технической сущности и изобретению является способ теплосъема заключающийся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего устройства и закручивают его (Калинин Э.К., Дрейцер Г.А., Копп Н.Э., Мякочин А.С. Эффективные поверхности теплообмена. - М.: Энергоатомиздат, 1998. 408 е.).

Основной недостаток тепловыделяющих элементов такого типа заключается в низкой эффективности закручивающих устройств, установленных на выпуклой поверхности тепловыделяющих элементов.

В наших опытах установлено, что использование закрутки потока в парогенерирующих устройствах, в которых присутствуют выпуклые теплоотдающие поверхности, приводит к обратному эффекту - снижению критических тепловых потоков (КТП), преждевременному наступлению кризиса, входу канала в закризисные режимы и выходу из строя реакторной установки (РУ) (Болтенко Э.А. Кризис теплообмена в кольцевых каналах с закруткой потока // Теплоэнергетика, 2003, №1 I.e. 25-30.).

Технический результат, на достижение которого направлено изобретение, заключается в повышении интенсивности теплосъема.

Достижение технического результата обеспечивается за счет того, что в способе теплосъема с поверхности тепловыделяющих элементов, заключающемся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего устройства и закручивают, при этом закрученный поток дополнительно закручивают относительно оси, лежащей под углом к продольной оси основного закрученного потока. Благодаря взаимодействию основного и дополнительного закрученных потоков происходит образование трехмерных вихрей, взаимодействующих с теплоотдающей поверхностью. Взаимодействие вихрей с теплоотдающей поверхностью приводит к интенсивному тепло-массообмену между ядром потока и пристенным слоем и, соответственно, к повышению интенсивности теплосъема.

Сущность изобретения поясняется чертежом, на котором представлено устройство для осуществления способа теплосъема с поверхности теплопередающих элементов.

Устройство, осуществляющее способ содержит тепловыделяющие элементы 1 и 2, установленные концентрично друг относительно друга. Устройство включает в себя основное закручивающее устройство 3 и две теплоотдающие поверхности - выпуклую теплоотдающую поверхность 4 и вогнутую теплоотдающую поверхность 5. На выпуклой теплоотдающей поверхности 4 расположено основное закручивающее устройство 3, продольная ось 6 которого в данном случае совпадает с продольной осью устройства. Основное закручивающее устройство 3 выполнено в виде проволоки навитой на выпуклую теплоотдающую поверхность 4. Ось 7 дополнительного закручивающего устройства 8 расположена под некоторым углом к продольной оси 6 основного закручивающего устройства. Дополнительное закручивающее устройство 8 выполнено в виде проволоки навитой с некоторым шагом на основное закручивающее устройство 3.

Способ теплосъема с поверхности тепловыделяющих элементов осуществляется следующим образом.

Теплоноситель подают в кольцевую щель, образованную выпуклой 4 и вогнутой 5 теплоотдающими поверхностями. Далее теплоноситель закручивают основным закручивающим устройством 6. Закрученный поток взаимодействует с дополнительными закручивающими устройствами 8. Благодаря взаимодействию основного и дополнительного закрученных потоков, оси закрутки которых находятся под углом, образуются трехмерные вихри значительно меньшего масштаба, чем те, которые образуются за счет закрутки потока основными закручивающими устройствами.

Взаимодействие вихрей приводит к интенсивному тепло-массообмену между ядром потока и пристенными слоями вблизи выпуклой и вогнутой теплоотдающими поверхностями и, соответственно, к повышению интенсивности теплосъема на выпуклой и вогнутой теплоотдающих поверхностях.

Экспериментальное исследование способа интенсификации теплосъема выполнено на кольцевом канале с внутренним тепловыделением, т.е. исследовался теплосъем на выпуклой теплоотдающей поверхности. Тепловыделение достигалось прямым пропусканием тока через стенку внутренней трубы. Исследования показали, что в кольцевом канале с закруткой теплоносителя коэффициенты теплоотдачи ниже, чем в гладком канале (выпуклая теплоотдающая поверхность). Коэффициенты теплоотдачи на выпуклой теплоотдающей поверхности при использовании закрученного и дополнительного закрученного потока выше коэффициентов теплоотдачи на гладкой теплоотдающей поверхности в два - три раза.

Таким образом, предлагаемый способ интенсификации теплосъема позволяет значительно повысить теплосъем на теплоотдающих поверхностях. Последнее достигается за счет взаимодействия закрученных потоков - основного и дополнительного. В предлагаемом способе основной закрученной поток дополнительно закручивают относительно оси, лежащей под углом к продольной оси основного закрученного потока. Благодаря взаимодействию основного и дополнительного закрученных потоков происходит образование трехмерных вихрей, взаимодействующих с теплоотдающей поверхностью. Взаимодействие вихрей с теплоотдающей поверхностью приводит к интенсивному тепло-массообмену между ядром потока и пристенным слоем и, соответственно, к повышению интенсивности теплосъема.

Похожие патенты RU2495347C1

название год авторы номер документа
Способ повышения теплосъема на выпуклых теплоотдающих поверхностях теплопередающих устройств и устройство для его осуществления 2016
  • Болтенко Эдуард Алексеевич
RU2680175C2
ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА 2005
  • Болтенко Эдуард Алексеевич
RU2295785C2
Способ повышения критических тепловых потоков в тепловыделяющей сборке с трубчатыми твэлами 2022
  • Блинков Владимир Николаевич
  • Болтенко Эдуард Алексеевич
RU2794744C1
СПОСОБ РАБОТЫ ТЕПЛОВЫДЕЛЯЮЩЕЙ СБОРКИ 2006
  • Болтенко Эдуард Алексеевич
RU2359346C2
СПОСОБ РАБОТЫ ТЕПЛОВЫДЕЛЯЮЩЕЙ СБОРКИ 2019
  • Болтенко Эдуард Алексеевич
RU2733201C1
СПОСОБ ОХЛАЖДЕНИЯ АКТИВНОЙ ЗОНЫ БЫСТРОГО РЕАКТОРА И УСТРОЙСТВО ЕГО ОСУЩЕСТВЛЕНИЯ 2007
  • Воронцов Александр Владимирович
  • Кудинович Игорь Владиславович
  • Сутеева Аделина Жанатовна
  • Хорьков Марк Георгиевич
RU2361302C2
СПОСОБ РАБОТЫ ТЕПЛОВЫДЕЛЯЮЩЕЙ СБОРКИ НА ВХОДНОМ УЧАСТКЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2010
  • Болтенко Эдуард Алексеевич
  • Комов Александр Тимофеевич
  • Дедов Алексей Викторович
  • Варава Александр Николаевич
  • Захаренков Александр Валентинович
RU2458414C1
ИНТЕНСИФИКАТОР ТЕПЛООТДАЧИ 2013
  • Варава Александр Николаевич
  • Дедов Алексей Викторович
  • Захаренков Александр Валентинович
  • Комов Александр Тимофеевич
  • Ильин Александр Валентинович
  • Мясников Виктор Васильевич
  • Болтенко Эдуард Алексеевич
RU2543609C1
Способ определения запасов до кризиса теплоотдачи в сборках с твэлами с двухсторонним охлаждением 2023
  • Болтенко Эдуард Алексеевич
RU2822376C1
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО 1990
  • Болтенко Э.А.
  • Дельнов В.Н.
RU2115083C1

Иллюстрации к изобретению RU 2 495 347 C1

Реферат патента 2013 года СПОСОБ ТЕПЛОСЪЕМА С ПОВЕРХНОСТИ ТЕПЛОВЫДЕЛЯЮЩИХ ЭЛЕМЕНТОВ

Изобретение относится к энергетике и может быть использовано в теплогенерирующих устройствах, например в ядерных энергетических установках. В способе теплосъема с поверхности тепловыделяющих элементов, заключающемся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего устройства и закручивают его, теплоноситель дополнительно закручивают относительно оси, лежащей под углом к продольной оси основного закрученного потока. Технический результат заключается в повышении интенсивности теплосъема за счет взаимодействия вихрей с теплоотдающей поверхностью, что приводит к интенсивному тепломассообмену между ядром потока и пристенным слоем. 1 ил.

Формула изобретения RU 2 495 347 C1

Способ теплосъема с поверхности тепловыделяющих элементов, заключающийся в том, что теплоноситель подают на теплоотдающую поверхность теплопередающего устройства и закручивают его, отличающийся тем, что теплоноситель дополнительно закручивают относительно оси, лежащей под углом к продольной оси основного закрученного потока.

Документы, цитированные в отчете о поиске Патент 2013 года RU2495347C1

ТРУБА ТЕПЛООБМЕННИКА 2000
  • Митюхин Федор Петрович
RU2200925C2
ТЕПЛОПЕРЕДАЮЩЕЕ УСТРОЙСТВО 1990
  • Болтенко Э.А.
  • Дельнов В.Н.
RU2115083C1
ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА 2005
  • Болтенко Эдуард Алексеевич
RU2295785C2
KR 100752635, 21.08.2007
Двухтактный усилитель мощности 1974
  • Москаленко Станислав Иосифович
SU614523A1

RU 2 495 347 C1

Авторы

Болтенко Эдуард Алексеевич

Варава Александр Николаевич

Захаренков Александр Валентинович

Ильин Александр Валентинович

Комов Александр Тимофеевич

Даты

2013-10-10Публикация

2012-05-03Подача