СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОЙ И ЗАРЯДОВОЙ СОСТАВЛЯЮЩИХ СИГНАЛА ПРИ ИЗМЕРЕНИЯХ МАГНИТНОЙ КОМПОНЕНТЫ ВНУТРЕННЕГО ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА Российский патент 2013 года по МПК G01R1/00 

Описание патента на изобретение RU2495439C1

Изобретение относится к области методологии измерения параметров внутренних электромагнитных импульсов (ВЭМИ), формируемых в корпусах аппаратуры, при действии ионизирующих излучений (ИИ). Оно может быть использовано при исследованиях механизмов образования электромагнитных наводок в цепях радиоэлектронной аппаратуры. Результаты исследований необходимы для повышения радиационной и электромагнитной стойкости образцов вооружения и военной техники, оснащенных радиоэлектронным оборудованием, космических аппаратов и другой техники подверженной действию ИИ.

Потребность в разработке данного способа обусловлена значительной неопределенностью в физической природе формирования электрических наводок, формируемых в цепях аппаратуры, при действии на ее корпус ионизирующих излучений. Наводки могут быть обусловлены как внутренними электромагнитными полями, так и осаждением (выбиванием) электронов на элементах аппаратуры объекта воздействия. В зависимости от спектра воздействующего излучения, материалов и компоновки внутреннего заполнения объектов, соотношения между амплитудными значениями напряжений, формируемых по вышеуказанным механизмам, могут значительно изменяться. Следует отметить, что способы защиты от наводок в значительной степени определяются природой формирования последних. Поэтому при исследованиях внутренних электромагнитных эффектов недопустимо аппаратными способами исключать вклад любой составляющей в формируемый в первичных преобразователях сигнал.

Как правило, при проведении экспериментальных исследований электромагнитных эффектов, формируемых в корпусах аппаратуры, используются разностные схемы измерений с применением экранирования датчиков электромагнитных полей, либо, для исключения паразитных наводок в регистрируемых сигналах, используют индукционные датчики с противоположной ориентацией обмоток, включенные по дифференциальной схеме и измеряют наводки, обусловленные только полями ВЭМИ [1, 2]. Однако применение дополнительных экранов приводит к искажению пространственного распределения электромагнитных и электронных полей в исследуемом объеме. Использование дифференциальных схем исключает сигналы, формируемые за счет натекания (выбивания) электронов на датчики и окружающие датчики элементы измерительной схемы.

Известно техническое решение по измерению электрической компоненты ВЭМИ, основанное на использовании двух штыревых антенн, одна из которых экранирована от электрического поля, а сигнал с другой определяется суммарным воздействием всех формируемых в исследуемом объеме полевых и зарядовых факторов. Сигнал, обусловленный действием только электрического поля, определяется путем вычитания сигналов с антенн [3].

Наиболее близким по техническому решению задачи (прототипом предлагаемого способа) является способ измерения магнитной составляющей электромагнитного поля индукционными датчиками [4].

Сущность способа-прототипа заключается в том, что в качестве первичного преобразователя используются две встречновключенные одновитковые рамочные антенны, расположенные на фиксированном расстоянии по оси симметрии параллельно друг другу. Антенны соединены с осциллографом посредством системы кабельных линий таким образом, что центральный проводник одного кабеля соединен с экраном другого кабеля и наоборот. Эти два отрезка кабеля подключены к третьему такому же кабелю, по которому сигнал передается на осциллограф. При подобной схеме подключения автоматически производится суммирование противофазных - формируемых магнитным полем и вычитание синфазных - обусловленных прочими физическими механизмами составляющих.

Данный способ имеет существенный недостаток, заключающийся в аппаратном исключении из регистрируемого сигнала составляющей, обусловленной натеканием (выбиванием) электронов.

Техническим результатом, на которое направлено предполагаемое изобретение, является повышение достоверности экспериментальных исследований за счет получения количественных данных о физических эффектах, обуславливающих формирование регистрируемого сигнала и минимизация количества экспериментов.

Технический результат достигается выделением соответствующих составляющих сигнала, формируемого в одновитковой рамочной антенне, которая не имеет прямой гальванической связи с корпусом облучаемого объекта, начало и конец антенны замыкают через согласующие нагрузки осциллографа, регистрацию сигналов с выводов антенны производят по независимым каналам, а выделение магнитной и зарядовой составляющих сигнала производят путем вычитания либо сложения (соответственно) сигналов с начала и конца рамочной антенны.

Таким образом, конструктивными отличиями предлагаемого способа являются:

- использование одной одновитковой рамочной антенны;

- отсутствие прямой гальванической связи антенны с корпусом;

- отсутствие разностной схемы регистрации сигнала.

Существенным отличием является возможность исследования амплитудно-временных характеристик магнитной составляющей ВЭМИ и наводок, обусловленных дисбалансом заряда.

Принципиальная электрическая схема, иллюстрирующая сущность способа приведена на Фиг-1, где

iз - зарядовая составляющая тока в рамке;

iм - магнитная составляющая тока в рамке;

U1, U2 - сигналы, зарегистрированные в каналах осциллографа;

R1, R2 - согласующие нагрузки осциллографа (R1=R2=50 Ом).

При генерации полей ВЭМИ любой датчик поля, помещенный внутри исследуемого объема, подвергается одновременному воздействию как минимум трех факторов:

- электромагнитного поля;

- стороннего тока электронов, выбиваемых с внутренних поверхностей образца;

- ионизирующего излучения.

В рамочной антенне электромагнитное поле генерирует ЭДС, пропорциональную производной напряженности магнитного поля по времени. Вследствие этого в рамке формируется ток, обозначенный на схеме как iм (магнитная составляющая тока в рамке).

Электроны, выбиваемые с внутренних поверхностей объекта, попадая на проводящий материал рамки, создают в ней некомпенсированный избыточный отрицательный заряд, который стекает с рамки через согласующие нагрузки системы регистрации.

Ионизирующее излучение не изменяет электрические свойства металла рамки (в отличие от полупроводников и диэлектриков), но выбивает с поверхности рамки в окружающее пространство электроны, создавая в антенне некомпенсированный избыточный положительный заряд, который также стекает через согласующие нагрузки системы регистрации.

Таким образом, имеется два конкурирующих процесса создания в рамке некомпенсированных зарядов разных знаков. В зависимости от значений коэффициентов выхода электронов из материалов рамки и корпуса объекта, зависящих от энергии первичных квантов, на антенне может образоваться заряд любого знака, от которого невозможно избавиться экранированием, т.к. внутренняя поверхность экрана сама является источником стороннего тока. Результирующие токи, возникающие в нагрузках рамки вследствие этих процессов, обозначены на схеме как iз1 и iз2. Их сумму iз можно назвать зарядовой составляющей тока в рамке. В случае симметричных нагрузок и симметричной рамки можно считать, что iз1≈iз2. Зарегистрированные сигналы в первом и втором каналах регистрации осциллографа можно представить в виде U1=(iз1-iм)/R1 и U2=(iз2-iм)/R2. Суммирование зарегистрированных сигналов позволит определить величину тока от некомпенсированного заряда, а вычитание - от производной напряженности магнитного поля по времени.

Работоспособность и информативность предлагаемого способа подтверждена при проведении экспериментальных работ с использованием ионизирующих излучений различного спектрального состава. Результаты экспериментов хорошо согласуются с данными расчетно-теоретических исследований.

Положительный эффект предлагаемого изобретения заключается в повышении достоверности экспериментальных исследований ВЭМИ за счет получения количественных данных о физических эффектах, обуславливающих формирование регистрируемого сигнала и минимизации количества экспериментов.

Источники информации

1. В.В. Панин, Б.М. Степанов. Практическая магнитометрия. М. «Машиностроение», 1978, стр.54.

2. «Измерительная техника», М. №5, 1977, стр.75.

3. А.П. Степовик, В.В. Отставнов, и др. Об измерениях электрической компоненты ВЭМИ с помощью штыревых антенн. Научно-технический сборник «Радиационная стойкость электронных систем-Стойкость-2010». - М.: НИЯУ МИФИ, 2010, стр.143-144.

4. «Зонд для измерения магнитных полей с субнаносекундным разрешением». «Rev. Sci. Jnstrum», 1975, 46, №7, стр.886-880. Русский перевод - «Приборы для научных исследований», М., №7, 1975, стр.88-91.

Похожие патенты RU2495439C1

название год авторы номер документа
Индукционный магнитоприемник 1981
  • Зимин Евгений Федорович
  • Кочанов Эдуард Степанович
  • Мирзоян Гурген Ашотович
  • Соколовский Василий Васильевич
SU968774A1
УСТРОЙСТВО РАДИОМАСКИРОВКИ 2008
  • Иванов Василий Петрович
  • Лебедев Михаил Николаевич
RU2360365C1
ЭКРАНИРОВАННАЯ МАГНИТНАЯ РАМОЧНАЯ АНТЕННА 2010
  • Орлов Александр Борисович
  • Зарубин Вячеслав Владимирович
  • Крылов Алексей Николаевич
  • Бацула Александр Пантелеевич
  • Волков Константин Михайлович
  • Вуколов Алексей Эрнестович
RU2433513C1
УПРАВЛЯЕМЫЙ ПРЕСЕЛЕКТОР, СОВМЕЩЕННЫЙ С МАГНИТНОЙ ФЕРРИТОВОЙ АНТЕННОЙ 2013
  • Седов Виталий Анатольевич
  • Каган Эдуард Михайлович
  • Шилов Павел Александрович
  • Кутикин Сергей Сергеевич
  • Горегляд Виктор Демьянович
RU2546542C1
ЭКРАНИРОВАННАЯ РАМОЧНАЯ АНТЕННА 2009
  • Бацула Александр Пантелеевич
  • Волков Константин Михайлович
  • Вуколов Алексей Эрнестович
  • Гюнтер Виктор Яковлевич
  • Крылов Алексей Николаевич
  • Орлов Александр Борисович
RU2393596C1
Широкополосная измерительная активная рамочная антенна 1985
  • Бороничев Геннадий Константинович
  • Павлов Сергей Васильевич
  • Артемьев Владимир Александрович
SU1241330A1
Устройство для измерения электрической и магнитной составляющей электромагнитного поля 1988
  • Кузовкин Владимир Александрович
  • Бутрик Жанна Федоровна
SU1663585A1
АВТОМАТИЗИРОВАННЫЙ КОМПЛЕКС ДЛЯ ИСПЫТАНИЙ ЭЛЕМЕНТОВ ЭЛЕКТРОННО-КОМПОНЕНТНОЙ БАЗЫ НА РАДИАЦИОННУЮ СТОЙКОСТЬ 2014
  • Панченко Алексей Николаевич
  • Пикарь Валерий Александрович
  • Родигин Анатолий Владимирович
  • Тетеревков Артём Викторович
  • Эльяш Света Львовна
RU2553831C1
ОБЛУЧАТЕЛЬ ДЛЯ ВОЗДЕЙСТВИЯ МАГНИТНОЙ СОСТАВЛЯЮЩЕЙ ЭЛЕКТРОМАГНИТНОГО ПОЛЯ 2006
  • Давыдочкина Светлана Вячеславовна
  • Давыдочкин Вячеслав Михайлович
  • Миров Игорь Михайлович
RU2308988C1
ПЛОСКАЯ ИНДУКЦИОННАЯ АНТЕННА 2011
  • Воронович Вячеслав Вячеславович
  • Мирошниченко Анатолий Яковлевич
  • Кузьмин Сергей Борисович
RU2470423C1

Реферат патента 2013 года СПОСОБ ИЗМЕРЕНИЯ МАГНИТНОЙ И ЗАРЯДОВОЙ СОСТАВЛЯЮЩИХ СИГНАЛА ПРИ ИЗМЕРЕНИЯХ МАГНИТНОЙ КОМПОНЕНТЫ ВНУТРЕННЕГО ЭЛЕКТРОМАГНИТНОГО ИМПУЛЬСА

Изобретение относится к области методологии измерения параметров внутренних электромагнитных импульсов (ВЭМИ), формируемых в корпусах аппаратуры, при действии ионизирующих излучений (ИИ) и может быть использовано при исследованиях механизмов образования электромагнитных наводок в цепях радиоэлектронной аппаратуры. Способ основан на выделении соответствующих составляющих сигнала, формируемого в одновитковой рамочной антенне. При этом рамочная антенна не имеет прямой гальванической связи с корпусом облучаемого объекта, начало и конец антенны замыкают через согласующие нагрузки осциллографа, регистрацию сигналов с выводов антенны производят но независимым каналам, а выделение магнитной и зарядовой составляющих сигнала производят путем вычитания либо сложения (соответственно) сигналов с начала и конца рамочной антенны. Технический результат заключается в повышении достоверности экспериментальных исследований ВЭМИ за счет получения количественных данных о физических эффектах, обуславливающих формирование регистрируемого сигнала, и минимизации количества экспериментов. 1 ил.

Формула изобретения RU 2 495 439 C1

Способ измерения магнитной и зарядовой составляющих сигнала при измерениях магнитной компоненты внутреннего электромагнитного импульса для исследования механизмов формирования радиационно стимулированных электромагнитных эффектов, основанный на выделении соответствующих составляющих сигнала, формируемого в одновитковой рамочной антенне, отличающийся тем, что рамочная антенна не имеет прямой гальванической связи с корпусом облучаемого объекта, начало и конец антенны замыкают через согласующие нагрузки осциллографа, регистрацию сигналов с выводов антенны производят по независимым каналам, а выделение магнитной и зарядовой составляющих сигнала производят путем вычитания либо сложения (соответственно) сигналов с начала и конца рамочной антенны.

Документы, цитированные в отчете о поиске Патент 2013 года RU2495439C1

СПОСОБ ОДНОПУНКТОВОЙ ДАЛЬНОМЕТРИИ ИСТОЧНИКОВ ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 1996
  • Богданов В.Г.
  • Гонтаренко А.Н.
  • Гришанов В.К.
  • Московенко В.М.
RU2118836C1
Устройство для приема вертикальной магнитной компоненты электромагнитного поля 1979
  • Шляхтин Владимир Владимирович
SU792178A1
Рамочная активная антенна 1980
  • Атапин Владимир Иванович
  • Бульбин Юрий Васильевич
  • Буянов Юрий Иннокентьевич
SU902123A1
ОДНОПУНКТОВЫЙ СПОСОБ МЕСТООПРЕДЕЛЕНИЯ ИСТОЧНИКА ЭЛЕКТРОМАГНИТНОГО ИЗЛУЧЕНИЯ 1993
  • Гонтаренко Александр Николаевич
  • Московенко Владимир Менашевич
  • Богданов Владимир Георгиевич
RU2054690C1

RU 2 495 439 C1

Авторы

Пашкович Игорь Константинович

Потапенко Андрей Иванович

Фесик Евгений Александрович

Даты

2013-10-10Публикация

2012-01-27Подача