МОНИТОРИНГ МЕРЦАТЕЛЬНОЙ АРИТМИИ Российский патент 2013 года по МПК A61B5/46 A61N1/39 

Описание патента на изобретение RU2496413C2

Это изобретение относится к системам мониторинга электрокардиограмм (ЭКГ) и, в частности, к системам мониторинга ЭКГ, которые отслеживают индикации мерцательной аритмии в реальном времени.

Мерцательная аритмия (МА) - это аритмия, при которой предсердие не сжимается в соответствии с остальным сердцем для эффективного нагнетания крови. Предсердие дрожит или фибриллирует на очень высокой неправильной частоте, и поэтому желудочки также сокращаются с неправильной частотой. Предсердный "толчок" при каждом сердечном сокращении утрачивается, и нагнетательная эффективность сердца снижается. Поскольку предсердие не совершает значительного сокращения во время фибрилляции, кровь может застаиваться в предсердии, и могут образовываться кровяные сгустки. Хотя мерцательная аритмия сама по себе обычно не приводит к смерти, большой процент всех инсультов обусловлен кровяными сгустками, образующимися при МА. МА возникает у примерно 0,4%-1,0% общей популяции и ежегодно поражает более 2 миллионов людей в США. Преобладание МА увеличивается с возрастом и до 10% популяции старше 80 лет получает диагноз МА и в некоторый момент - инсульт. Инсульт является третьей по величине причиной смерти в Северной Америке, уступая только сердечным приступам и раку. Кроме того, пациенты часто демонстрируют симптомы, например, внезапные эпизоды учащенного сердцебиения и одышки. Таким образом, мерцательная аритмия является серьезным состоянием, которое требует лечения.

Разработаны системы и алгоритмы для идентификации симптомов МА в электрокардиограммах пациентов. Две такие техники описаны, например, в патентах США 6490479 и 6937887. Однако имеющиеся алгоритмы выявления МА иногда не способны отличать МА от некоторых других видов аритмии. Эта неправильная классификация других неправильных ритмов как МА приводит к ложным срабатываниям сигнализации. Поскольку персонал клиники должен реагировать на каждый сигнал тревоги и удостоверять его, желательно уменьшать количество ложных срабатываний сигнализации, насколько возможно. Слишком большое количество ложных срабатываний сигнализации означает дополнительную работу для персонала клиники, который может понижать чувствительность сигнализатора для уменьшения количества ложных срабатываний сигнализации, что автоматически приводит к снижению его чувствительности к настоящим сигналам тревоги. Например, система мониторинга МА должна включать в себя способ различения между МА, которая имеет нерегулярно неправильный ритм, и аритмией с регулярно неправильным ритмом, например, предсердной бигеминией, которую известные способы обычно ошибочно распознают как МА.

Известные алгоритмы выявления МА, в общем случае, имеют только два варианта решения, в том смысле, что они классифицируют ритм как с МА, либо без МА. Желательно не только идентифицировать МА, но и обеспечивать меру доверительности того, что идентифицированный ритм является МА. Такая мера доверительности помогала бы персоналу клиники оценивать серьезность сигнализации МА.

Известные алгоритмы сигнализируют только о начале эпизода МА. Иногда бывает важно сигнализировать об окончании МА. Например, медицинскому персоналу интересно знать, когда заканчивается МА для пациентов, подключенных к кардиовертеру или принявших лекарство. Таким образом, желательно, чтобы монитор МА сигнализировал медицинскому персоналу не только о начале эпизода МА, но и об окончании эпизода МА.

В настоящее время нет ясного консенсуса по оптимальным конечным точкам для определения реакций на лечение МА. Поэтому необходимы конечные точки, которые реагируют адекватно и представляют положительный или отрицательный лечебный эффект. Такие конечные точки должны быть способны предписывать лечебный процесс с целью полного излечения от МА, например, процедуры иссечения левого предсердия, а также методы лечения, имеющие целью сокращение симптоматических эпизодов МА и повышение качества жизни, например, фармакологическое лечение. Система мониторинга, которая сообщает в реальном времени нагрузку МА, помогала бы медицинскому персоналу оценивать необходимость и эффективность тех или иных методов лечения.

Кроме того, многие техники мониторинга МА не дают возможности учитывать тип мониторинга МА, что необходимо для конкретной стадии заболевания. Например, пациенты с хронической или постоянной МА, пациенты, недавно подключенные к кардиовертеру, и пациенты с пароксизмальной МА могут нуждаться в разном мониторинге. В зависимости от того, требуется ли постоянная информация о смене ритма или только долгосрочная тенденция, сигнализатор монитора можно настраивать в соответствии с нуждами конкретного пациента.

Согласно принципам настоящего изобретения, система мониторинга мерцательной аритмии выявляет МА и сообщает о нагрузке МА в реальном времени. В иллюстративной системе мониторинга, описанной ниже, классификатор сердечных сокращений выбирает те сердечные сокращения из входного сигнала ЭКГ, которые удовлетворяют критериям, используемым для выявления МА. Выбранные сердечные сокращения объединяются для генерации образца сокращения в виде P-волны. Анализ образца позволяет идентифицировать признак P-волны, и признак интервала R-R также идентифицируется. Вектор признака вычисляется с использованием, по меньшей мере, одного признака P-волны и признака интервала R-R. Классификатор, который представляет собой набор правил, используется для классификации вектора признака либо как имеющего МА, либо без МА. Классификации МА проверяются с использованием второго набора правил для коррекции возможной неправильной классификации. Изобретение, в необязательном порядке, может обеспечивать меру доверительности выявления МА. Система может вычислять и сообщать в реальном времени нагрузку МА в любой момент времени, заданный частотой и длительностью эпизодов МА. Система может адаптировать свой мониторинг МА к пациенту с учетом характеристик пациента, которые определяют требования к мониторингу.

На чертежах:

фиг.1 - блок-схема основных компонентов системы мониторинга ЭКГ.

фиг.2 - блок-схема входного каскада системы ЭКГ.

фиг.3 - блок-схема модуля обработки типичной системы мониторинга ЭКГ.

фиг.4 - обработка данных электрокардиограммы для обеспечения образца ЭКГ для совокупности сердечных сокращений.

фиг.5 - измерение различных параметров электрокардиограммы.

фиг.6 - система выявления и анализа мерцательной аритмии, построенная согласно принципам настоящего изобретения.

фиг.7 - мера позиции P-волны.

фиг.8 - мера морфологии P-волны.

фиг.9 - кривая чувствительности приемника для регулируемой чувствительности выявления МА.

фиг.10A - регулярно неправильные интервалы R-R.

фиг.10B - нерегулярно неправильные интервалы R-R.

фиг.11 - счетчик с гистерезисом, который можно использовать для уменьшения ложных срабатываний сигнализации.

На фиг.1 показана блок-схема основных компонентов системы мониторинга ЭКГ, пригодной для использования согласно настоящему изобретению. Предусмотрена совокупность электродов 20 для присоединения к коже пациента. Обычно электроды представляют собой одноразовые проводники, на поверхность которых нанесен проводящий клейкий гель, прилипающий к коже. Каждый проводник имеет защелку или зажим, который защелкивается или зажимается на проводе электрода системы ЭКГ. Электроды 20 подключены к модулю 22 получения ЭКГ, который осуществляет предварительное преобразование сигналов, принимаемых на электродах. Сигналы электродов поступают на модуль 26 обработки ЭКГ, обычно через устройство 24 электрической изоляции, которое защищает пациента от разрядов тока, а также защищает систему ЭКГ, когда пациент, например, проходит процедуру дефибрилляции. Для электрической изоляции обычно используются оптические изоляторы. Затем обработанная информация ЭКГ отображается на дисплее или печатается в отчете ЭКГ с помощью устройства вывода 28.

На фиг.2 более подробно показан модуль получения 22. Сигналы электродов, которые обычно имеют амплитуду несколько милливольт, усиливаются усилителями, которые обычно также снабжены высоковольтной защитой от дефибрилляционных импульсов. Усиленные сигналы подвергаются фильтрации и затем преобразуются в цифровые сигналы с помощью аналого-цифровых преобразователей. Цифровые сигналы подвергаются обработке ЭКГ под управлением ЦП 34. Большую часть специализированной электроники модуля получения можно реализовать в виде специализированной интегральной схемы (ASIC).

На фиг.3 показана блок-схема модуля анализа типичной системы мониторинга ЭКГ. Детектор 42 ритмовых импульсов идентифицирует и отбрасывает электрические пики и другие электрические аномалии, вырабатываемые водителем ритма для пациентов, которые его носят. Детектор 44 QRS выявляет доминантный импульс электрической осциллограммы. Сегменты Q-R-S нормальной электрокардиограммы ограничивают главный электрический импульс кардиограммы, т.е. импульс, который стимулирует сокращение левого желудочка. Ограничение комплекса QRS составляет основу для выявления более слабых возмущений кардиограммы, для чего применяется сегментатор 46 кардиограммы. Сегментатор кардиограммы разграничивает полную последовательность сегментов кардиограммы, включающую в себя P-волну и сегменты от Q до U электрокардиограммы. Когда каждая форма волны полностью ограничена, классификатор 48 сердечных сокращений сравнивает каждое новое сокращение с предыдущими сердечными сокращениями и классифицирует сердечные сокращения как нормальные (правильные) для конкретного человека или аномальные (неправильные). Классификация сердечных сокращений позволяет анализатору 52 усредненного сердечного сокращения задавать характеристики нормального сердцебиения, и амплитуды и длительности сегментов усредненного сердечного сокращения измеряются на этапе 54. Классификации сердечных сокращений и два измерения P-волны используются для определения сердечного ритма на этапе 56. На фиг.4 и 5 показано, как действует эта обработка электрокардиограммы. Слева на фиг.4 показана совокупность 60 осциллограмм сердцебиения. Хотя на этом чертеже показаны сигналы шести отведений, в построенном варианте осуществления используется только три главных отведения ЭКГ. Классификатор 48 сердечных сокращений сравнивает различные характеристики сердцебиения и классифицирует некоторые сердечные сокращения как нормальные (N*,0). Например, все сердечные сокращения из отведений V5 и V6 в этом примере классифицированы как нормальные. Другие четыре отведения содержат сердечное сокращение, демонстрирующее характеристики преждевременного сокращения желудочка (PVC,1; Vis,1). На этапе 62 система ЭКГ объединяет характеристики нормальных сердечных сокращений, исключает характеристики аномальных сердечных сокращений, выравнивает сердечные сокращения по времени и усредняет их для получения усредненного сердечного сокращения. Осциллограммы на этапе 64 иллюстрируют осциллограммы усредненного сердечного сокращения для шести отведений, показанных в этом примере. Согласно фиг.5 осциллограммы 64 усредненного сердечного сокращения шести отведений измеряются в отношении различных характеристик, показанных на этапе 66, например, амплитуд и длительностей P-волны 70, Q-волны, R-волны и T-волны, и межволновых интервалов, например, длительности QRS и интервала P-Q. Показано, что измерения записываются в измерительной таблице 68 для шести отведений в этом примере.

Волны ЭКГ и их измерения можно направлять на автономную рабочую станцию с помощью пакета генерации отчета для создания отчета об электрокардиограммах пациента. Однако большинство систем мониторинга ЭКГ, например, система мониторинга Philips IntelliVue® и дефибриллятор/система мониторинга Philips MRx имеют встроенные пакеты мониторинга ЭКГ. Согласно принципам настоящего изобретения, система мониторинга ЭКГ включает в себя систему выявления и анализа мерцательной аритмии, показанную в виде блок-схемы на фиг.6. Классификатор 48 сердечных сокращений передает информацию образца P-волны и информацию интервала R-R на процессор 82 экстракции признаков P-волны и процессор 84 экстракции признаков R-R. Мерцательная аритмия, таким образом, выявляется на основании комбинации признаков интервала R-R и признаков P-волны. В построенном варианте осуществления образец P-волны компилируется из выбранных сердечных сокращений во временном окне. P-волны совокупности сердечных сокращений используются для вычисления суммы абсолютных значений разностей в сигналах типа P-волны всех отведений из выбранных сердечных сокращений во временном окне. Этот вычисленный образец P-волны затем используется в предпочтительном варианте осуществления для экстракции позиционного признака P-волны и морфологического признака P-волны. Предпочтительный позиционный признак P-волны является мерой отклонения по времени от среднего интервала P-Q, который представляет собой интервал времени от пика активности P-волны до начала комплекса QRS, как показано на фиг.7. Подходящие интервалы, которые можно использовать, представляют собой промежутки времени от пика P-волны 70 до (отрицательного) пика Q-волны 72, обозначаемые как интервал P-Q на фиг.7. Другой мерой является время от времени P-волны 70 до времени R-волны 74. Для нормального синусового ритма изменение интервала P-Q будет очень малым. В условиях МА изменение интервала P-Q будет больше, поскольку образец P-волны не будет демонстрировать согласованно идентифицируемую P-волну. Предпочтительным морфологическим признаком P-волны является подобие P-волны от образца к образцу. Характеристики P-волны, которые можно использовать в морфологическом анализе, включают в себя пиковую амплитуду P-волны, ее длительность во времени, ее наклон или ее площадь относительно базовой линии, которая показана заштрихованной областью под P-волной 70 на фиг.8. Для нормального синусового ритма характеристики P-волны будут очень слабо изменяться от образца к образцу. При наличии МА совпадение характеристик образца будет слабым.

Предпочтительной мерой интервала R-R для выявления МА является регулярность сердцебиения. Регулярный интервал R-R является характеристикой нормального синусового ритма, и нерегулярные интервалы R-R являются характеристикой МА. Для оценки регулярности интервалов R-R можно использовать марковскую модель, использующую данные интервала R-R.

Модуль 80 оценки шума используется для вычисления оценки шумовых артефактов в сигнале ЭКГ. Предпочтительной мерой шума является сумма вторых производных выборок сигнала в области P-волны, измеренной для каждого сердечного сокращения. Эта мера поступает на процессор 82 экстракции признаков P-волны и процессор 84 экстракции признаков R-R для подавления экстракции признаков в условиях высокого шума.

Когда уровень шума достаточно низок для экстракции признаков, экстрагированные признаки P-волны и интервала R-R поступают на классификатор МА 90. Экстрагированные признаки объединяются классификатором для формирования вектора признака, который используется для классификации ритма либо как имеющего МА, либо без МА. Например, вышеупомянутые признаки P-волны и интервала R-R можно объединять для идентификации МА согласно

МА = [(неправильный ритм) И (нет P-волны ИЛИ нерегулярный интервал P-R ИЛИ плохое совпадение образцов P-волны)].

В построенном варианте осуществления классификатор также обеспечивает меру доверительности своего определения. Экспертные данные электрокардиограмм пациентов с известными ритмами с МА и без МА поступают на экстракторы 82 и 84 признаков, а также на классификатор 90, что позволяет наблюдать реакцию экстракторов на известные условия ритма. Каждый экстрагированный признак непроверенного ритма затем можно оценивать относительно этих известных условий и определять правдоподобие, с которым каждый признак является характеристикой МА. Объединенные оценки представляются оператору для обеспечения меры доверительности результатов классификации, осуществляемой классификатором 90.

Использование таких экспертных данных известных популяций пациентов для "обучения" системы позволяет добиться компромисса между чувствительностью и специфичностью для разных конфигураций системы, соответствующих разным популяциям пациентов. На фиг.9 показаны диапазоны рабочих характеристик приемника, для которых можно заранее настроить систему выявления мерцательной аритмии. Когда чувствительность и дополнительная ей 1-специфичность сбалансированы, кривая является нейтральной, что демонстрирует кривая 300. Если система настроена так, чтобы иметь повышенную чувствительность к МА (примеры приведены ниже), она будет демонстрировать рабочую характеристику, смещенную в сторону чувствительности, как показывает кривая 302, и если система настроена так, чтобы иметь повышенную специфичность, рабочая кривая будет идти, как показывает кривая 304. Кроме того, благодаря обучению системы на известных популяциях пациентов, пользовательские средства управления можно упростить, позволяя пользователю выбирать популяцию пациентов, вместо того, чтобы вдаваться в детали, задавая многочисленные параметры. Выбор конкретной популяции пациентов, например, "после водителя ритма" или "хроническая МА", может приводить к автоматической настройке системы на номинальные рабочие параметров, желательные для этой конкретной популяции. Например, пациенты с хронической или перманентной МА могут не нуждаться в сигнализации, а только определении тенденции частоты и ритма и вычислении нагрузки МА. Пациенты, выведенные из состояния мерцательная аритмия с помощью водителя ритма, нуждаются в чувствительном выявлении МА, чтобы медицинский персонал немедленно узнавал, когда у пациента снова появится МА. Пациенты сердечной хирургии также попадают в эту категорию пациентов, которым необходимо чувствительное выявление МА для немедленного извещения медицинского персонала о смене ритма, свидетельствующем о появлении МА или выходе из МА. Для пациентов с историей пароксизмальной МА, которым свойственны появление МА и выход из МА, желательно менее чувствительное выявление. Если необходимо знать о смене ритма, сигнализация должна быть как можно точнее, в компромиссе с чувствительностью для более низкой частоты ложного срабатывания сигнализации. Короткая вспышка МА не играет большой роли для этой группы. Регулируя баланс чувствительность/специфичность, предпочтительно, просто выбирая тип популяции пациентов, монитор МА, отвечающий настоящему изобретению, можно настраивать в отношении того, насколько долго и насколько часто он должен видеть эпизоды МА, прежде чем сгенерирует сигнал "начало МА", и аналогично, насколько долго и насколько часто он должен видеть эпизоды без МА, прежде чем сгенерирует сигнал "конец МА". Помимо управления минимальной длительностью и частотой ритма, аналогичное управление параметрами системы можно использовать для обеспечения высокочувствительного выявления МА (со снижением специфичности и увеличением частоты ложного срабатывания сигнализации) или высокоспецифичного выявления МА (со снижением чувствительности).

Для уменьшения возможности ложных срабатываний сигнализации, пример, представленный на фиг.6, включает в себя корректор 92 для повторной классификации тех векторов признака, которые классификатор 90 ошибочно классифицировал как МА. По желанию, можно использовать разнообразные критерии повторной классификации. Например, при наличии хорошей P-волны, определенной на основании признака или признаков P-волны, вектор признака следует классифицировать как «без МА» независимо от признака интервала R-R. Это позволяет избежать классификации неправильных ритмов с правильными P-волнами как МА. Другая возможность состоит в проверке регулярности интервалов R-R-R, так называемых двойных интервалов R-R. Интервалы R-R, которые сами по себе неправильны, но регулярно повторяются, могут быть характеристикой предсердной бигеминии, а не МА, тогда как нерегулярно повторяющиеся неправильные интервалы R-R являются характеристикой МА. В примере, приведенном на фиг.10a, неправильные интервалы R-R R-R1 и R-R2 показаны между R-волнами 100 и 102 и R-волнами 102 и 104, соответственно. Но этот неправильный ритм регулярно повторяется, поскольку следующий интервал является интервалом R-R1 между R-волнами 104 и 106. Анализ интервала R-R-R для R-R1 и R-R2 выявит эту регулярную неправильность. Такой регулярно повторяющийся неправильный ритм может быть характеристикой предсердной бигеминии, а не МА. Однако на фиг.10b показано три разных интервала R-R: R-R1, R-R2 и R-R3, последовательно расположенных между R-волнами 100-107. Такая нерегулярная неправильность выявляется путем анализа интервала R-R-R, благодаря чему эту аритмию можно классифицировать как МА.

Для дополнительного уменьшения ложных срабатываний сигнализации реализован счетчик эпизодов МА со встроенным гистерезисом. Гистерезис позволяет подавлять сигнализацию коротких эпизодов ошибочных результатов, и его можно использовать для изменения чувствительности и специфичности выявления МА. На фиг.11 показан несимметричный счетчик (можно использовать и симметричные счетчики), который настроен так, чтобы чувствительность в начале эпизода МА была меньше, чем в конце эпизода МА. Такой счетчик будет более определенно указывать пользователю об окончании эпизода МА, что может играть роль в клинической диагностике или терапии или назначении лекарств. В примере, приведенном на фиг.11, верхняя ступенчатая функция 200 показывает интервалы анализа множественных сердечных сокращений, которые происходят в моменты времени, отложенные по оси абсцисс чертежа и классифицируются либо как с МА, либо как без МА, что указано на оси ординат чертежа. Счетчик инициализируется в этом примере на уровне -4, что показано началом ступеней счетчика 202, которые графически отображают увеличение счетчика. Каждый интервал, классифицированный как МА, приводит к ступенчатому увеличению счетчика (например, момент 2), и каждый интервал, классифицированный как отсутствие МА, приводит к ступенчатому уменьшению счетчика (например, момент 3). Когда величина счетчика достигает нулевого порога в момент времени 9, он увеличивается до максимального значения +2 в этом примере, на котором остается, пока интервалы без МА не приведут к его уменьшению. Это начинается в момент времени 12, когда встречается интервал без МА. Следующий интервал без МА в момент времени 13 возвращает счетчик обратно к нулю, и в этот момент счетчик немедленно сбрасывается к начальному уровню -4. Сигнал выдается всякий раз, когда величина счетчика больше нуля, в связи с чем управление сигнализацией 204 переходит в состояние ВКЛ в момент времени 9 и возвращается в состояние ВЫКЛ в момент времени 13. Можно видеть, что это управление сигнализацией менее чувствительно к эпизодам МА, которые переводят сигнализацию в состояние ВКЛ ("начало МА"), и более чувствительно к интервалам без МА, которые переводят сигнализацию в состояние ВЫКЛ ("конец МА"). Разные начальные настройки и пороги для счетчика будут приводить к разным значениям гистерезиса и, следовательно, к разной чувствительности и специфичности в отношении выдачи сигнала МА или отчета о состоянии пользователю.

Выход корректора 92 сообщает о выявленных ритмах с МА, как показано на фиг.6, которые могут быть классификациями «МА/без МА» функции 200, выходом, ограничивающим ложное срабатывание сигнализации, например, функцией 204 управления сигнализацией, или каким-либо другим процессом контролируемого принятия решения относительно МА, реализованным пользователем. Выявленные ритмы с МА, включающие в себя начальный момент и конечный момент эпизодов МА, поступают на калькулятор 94 нагрузки МА, показанный на фиг.6 для сообщения о нагрузке МА пользователю. Вычисленная нагрузка МА является статистическим вычислением, представляющим частоту и длительность эпизодов МА. Нагрузку МА можно, дополнительно или альтернативно выражать как процент некоего предыдущего периода времени (например, последних 24 часов или полного времени мониторинга), в течение которого сердце пациента находилось в состоянии мерцательной аритмии. Нагрузка МА отображается на дисплее или принтере 28 и может быть показана численно, графически, в виде трендовой диаграммы или их комбинаций. Врачи могут использовать нагрузку МА или тренд нагрузки МА для назначения дальнейшего лечения пациента или прописывания ему лекарств.

Похожие патенты RU2496413C2

название год авторы номер документа
СПОСОБ ПРОГНОЗИРОВАНИЯ ВОССТАНОВЛЕНИЯ СИНУСОВОГО РИТМА У БОЛЬНЫХ ФИБРИЛЛЯЦИЕЙ ПРЕДСЕРДИЙ 2010
  • Муромкина Анна Владимировна
  • Баллод Борис Анатольевич
  • Назарова Ольга Анатольевна
RU2485880C2
СПОСОБ ДИАГНОСТИКИ МИКРОВАСКУЛЯРНОЙ СТЕНОКАРДИИ 2012
  • Сидоров Виктор Васильевич
  • Нагорнев Сергей Николаевич
  • Кульчицкая Детелина Борисовна
  • Фролков Валерий Константинович
  • Пузырева Галина Анатольевна
RU2508045C1
СИСТЕМА И СПОСОБ АВТОМАТИЗИРОВАННОГО АНАЛИЗА И ИНТЕРПРЕТАЦИИ ЭЛЕКТРОКАРДИОГРАММЫ 2019
  • Подладчикова Татьяна Владимировна
  • Глазкова Наталья Юрьевна
  • Степанова Дарья Кирилловна
RU2791006C1
Способ профилактики развития острых тромбозов брахиоцефальных артерий и ишемического инсульта у больных с мерцательной аритмией 2015
  • Саркисян Захар Оганесович
RU2613561C1
СПОСОБ ОКАЗАНИЯ ЭКСТРЕННОЙ КАРДИОЛОГИЧЕСКОЙ ПОМОЩИ 2016
  • Бодин Олег Николаевич
  • Аржаев Дмитрий Алексеевич
  • Бодин Андрей Юрьевич
  • Ожикенов Касымбек Адильбекович
  • Полосин Виталий Германович
  • Рахматуллов Артур Фагимович
  • Рахматуллов Руслан Фагимович
  • Рахматуллов Фагим Касымович
  • Сафронов Максим Игоревич
  • Сергеенков Антон Сергеевич
  • Убиенных Анатолий Геннадьевич
RU2644303C1
СРЕДНЕ-РЕГИОНАЛЬНЫЙ ПРЕДШЕСТВЕННИК ПРЕДСЕРДНОГО НАТРИЙУРЕТИЧЕСКОГО ПЕПТИДА (pro-ANP) ДЛЯ ИДЕНТИФИКАЦИИ ПАЦИЕНТОВ С ФИБРИЛЛЯЦИЕЙ ПРЕДСЕРДИЙ, НАЧАВШЕЙСЯ МЕНЬШЕ ЧЕМ 48 ЧАСОВ ТОМУ НАЗАД 2012
  • Мен Кристоф
RU2570755C2
СПОСОБ И СИСТЕМА АВТОМАТИЧЕСКОГО АНАЛИЗА ЭКГ 2020
  • Егоров Константин Сергеевич
  • Аветисян Манвел Согомонович
  • Соколова Елена Владимировна
RU2767157C2
СПОСОБ ПРОГНОЗИРОВАНИЯ ВОЗНИКНОВЕНИЯ ПАРОКСИЗМА ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ 2013
  • Добрых Вячеслав Анатольевич
  • Еремеев Александр Геннадьевич
RU2519758C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ТЕЧЕНИЯ ИШЕМИЧЕСКОЙ БОЛЕЗНИ СЕРДЦА 2008
  • Татарченко Иван Порфирьевич
  • Позднякова Надежда Викторовна
  • Петрунина Елена Валерьевна
  • Морозова Ольга Ивановна
  • Соловьева Кристина Валерьевна
RU2391044C2
СПОСОБ ДИФФЕРЕНЦИАЛЬНОЙ ДИАГНОСТИКИ СТЕНОКАРДИИ 2006
  • Миронова Татьяна Феофановна
  • Миронов Владимир Александрович
  • Миронов Михаил Владимирович
RU2322942C1

Иллюстрации к изобретению RU 2 496 413 C2

Реферат патента 2013 года МОНИТОРИНГ МЕРЦАТЕЛЬНОЙ АРИТМИИ

Изобретение относится к медицинской технике, в частности к системам мониторинга ЭКГ, которые отслеживают индикации мерцательной аритмии в реальном времени. Система мониторинга мерцательной аритмии (МА) содержит источник данных электрокардиограммы, экстрактор признаков Р-волны, экстрактор признаков интервала R-R, классификатор МА, реагирующий на признак Р-волны и признак интервала R-R, который классифицирует сердечный ритм как с МА или без МА, дисплей, реагирующий на классификатор МА для отображения классификации МА, и пользовательский ввод для регулировки баланса чувствительность/специфичность выявления ритма с МА, при этом пользовательский ввод дополнительно содержит выбор типа популяции пациентов для автоматической настройки номинальных рабочих параметров выявления ритма с МА для выбранного типа популяции пациентов. Изобретение позволит упростить настройку номинальных рабочих параметров системы мониторинга МА для выбранного типа популяции пациентов. 13 з.п. ф-лы, 11 ил.

Формула изобретения RU 2 496 413 C2

1. Система мониторинга мерцательной аритмии (МА), содержащая:
источник данных электрокардиограммы,
экстрактор признаков Р-волны,
экстрактор признаков интервала R-R,
классификатор МА, реагирующий на признак Р-волны и признак интервала R-R, который классифицирует сердечный ритм как с МА или без МА,
дисплей, реагирующий на классификатор МА для отображения классификации МА, и
пользовательский ввод для регулировки баланса чувствительность/специфичность выявления ритма с МА, при этом пользовательский ввод дополнительно содержит выбор типа популяции пациентов для автоматической настройки номинальных рабочих параметров выявления ритма с МА для выбранного типа популяции пациентов.

2. Система мониторинга мерцательной аритмии (МА) по п.1, в которой источник данных электрокардиограммы содержит классификатор сердечных сокращений.

3. Система мониторинга мерцательной аритмии (МА) по п.2, в которой классификатор сердечных сокращений создает образец Р-волны.

4. Система мониторинга мерцательной аритмии (МА) по п.1, в которой экстрактор признаков Р-волны создает позиционный признак Р-волны и морфологический признак Р-волны.

5. Система мониторинга мерцательной аритмии (МА) по п.4, в которой классификатор МА реагирует на позиционный признак Р-волны, морфологический признак Р-волны и признак интервала R-R для классификации сердечного ритма как с МА или без МА.

6. Система мониторинга мерцательной аритмии (МА) по п.4, в которой позиционный признак Р-волны содержит интервал P-Q или P-R.

7. Система мониторинга мерцательной аритмии (МА) по п.1, дополнительно содержащая калькулятор нагрузки МА, реагирующий на сердечные ритмы, классифицированные как с МА или без МА, для выработки меры нагрузки МА, представляющей частоту и длительность МА.

8. Система мониторинга мерцательной аритмии (МА) по п.1, дополнительно содержащая корректор, реагирующий на классификацию МА для сокращения появления ложных срабатываний сигнализации.

9. Система мониторинга мерцательной аритмии (МА) по п.8, в которой корректор способен измерять нерегулярность R-R интервалов.

10. Система мониторинга мерцательной аритмии (МА) по п.8, в которой корректор способен идентифицировать короткие интервалы МА.

11. Система мониторинга мерцательной аритмии (МА) по п.10, в которой корректор дополнительно способен подавлять сигнализацию для коротких интервалов МА с использованием гистерезиса.

12. Система мониторинга мерцательной аритмии (МА) по п.1, в которой работа экстрактора признаков Р-волны и экстрактора признаков интервала R-R включает оценивание шума.

13. Система мониторинга мерцательной аритмии (МА) по п.7, в которой калькулятор нагрузки МА сообщает процент периода времени, в течение которого сердечный ритм проявлял мерцательную аритмию.

14. Система мониторинга мерцательной аритмии (МА) по п.7, в которой калькулятор нагрузки МА сообщает частоту и/или длительность выявленных эпизодов ритма с МА.

Документы, цитированные в отчете о поиске Патент 2013 года RU2496413C2

US 6937887 B2, 30.08.2005
US 2006276716 A1, 07.12.2006
US 2006200036 A1, 07.09.2006
СПОСОБ ДИАГНОСТИКИ РИСКА РАЗВИТИЯ ПАРОКСИЗМАЛЬНОЙ ФИБРИЛЛЯЦИИ ПРЕДСЕРДИЙ У БОЛЬНЫХ ИШЕМИЧЕСКОЙ БОЛЕЗНЬЮ СЕРДЦА 2005
  • Иванов Сергей Юрьевич
  • Бурова Наталья Николаевна
  • Бондаренко Борис Борисович
RU2283024C1
US 2006084881 A1, 20.04.2006
SUN R
et al
Atrial arrhythmias detection based on neural network combining fuzzy classifiers
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture

RU 2 496 413 C2

Авторы

Бабаейзадех Саид

Грегг Ричард Е.

Хелфенбейн Эрик

Чжоу София Хуай

Даты

2013-10-27Публикация

2009-01-09Подача