Изобретение относится к боеголовкам для противосамолетных и противоракетных ракет.
Известны такие боеголовки, например, состоящие из спаянных стержней и взрывчатого вещества (далее ВВ), см., например, «Авиационное вооружение», Харвест, 2003, стр.139. Но они значительно увеличивают конечную массу боевой ракеты и, следовательно, снижают ее скорость, дальность и потолок. Известны также кинетические боеголовки, не содержащие ни ВВ, ни осколков, а поражающие цель прямым попаданием, см. Интернет, Википедия, система «Иджис», ракета «Стандарт-3». Но они бесполезны при малейшем промахе.
Задача и технический результат изобретения - снижение массы традиционной боеголовки или поражение близколетящих целей при отсутствии боеголовки.
Данная боеголовка почти не содержит ВВ и совсем не содержит готовых осколков или осколкообразующей рубашки. Боеголовка состоит из корпуса ракеты, имеющего с внутренней стороны перфорирующие линейные кумулятивные заряды, разрезающие корпус на фрагменты. Разумеется, в понятие корпус не входит двигатель - разместить в нем ВВ затруднительно. Хотя если двигатель жидкостный, то внутри баков можно разместить перфорирующие заряды.
Причем подрывать перфорирующие заряды надо с передней части ракеты, чтобы получившиеся фрагменты приобрели ориентацию в сторону от корпуса.
Получившиеся фрагменты могут иметь форму ромбов или прямоугольников. Ромбы имеют хорошую аэродинамическую обтекаемость, хорошую «поворотливость» при полете в атмосфере, хорошую пробивную способность вследствие острой переднее оконечности и большую ширину пробоины. Ромбы могут иметь соотношение длины к ширине около 1:2-1:3. Но прямоугольные, вытянутые в продольном направлении (приблизительно в соотношении 1:3-1:5) фрагменты, имеют меньшее поперечное сечение, меньшую ширину пробоины, но зато могут глубже внедриться в материал цели. Целесообразность формы следует определить испытаниями.
В качестве материала корпуса следует выбрать броневую сталь или вольфрам. Кстати, расчеты показывают, что при равной прочности изделий из дюралюминия, титана, стали, вольфрама и даже урана их вес оказывается практически одинаковым. А пробивная способность таких фрагментов, естественно, будет тем больше, чем выше плотность материала.
Но у более тонкой обшивки пониженная прочностная устойчивость. Однако есть способ ее повысить - для этого ракета должна иметь герметичный корпус, заполненный газом под давлением. В качестве таких газов могут использоваться инертные газы, например, азот или аргон. Но более интересен вариант, когда корпус заполняется газом, увеличивающим взрывной эффект боеголовки - ацетиленом, этиленом, дивинилом, метаном, этаном и т.п. Причем в смеси с кислородом получится газовый боеприпас объемного взрыва. Однако при этом следует проверить, не воздействуют ли такие газы на изоляцию электроники и на материал корпуса. Именно вследствие последней причины нельзя использовать для этой цели водород - он вызывает охрупчивание металлов. Также следует выбирать горючий газ, который медленнее всего реагирует с кислородом при хранении, и хранить ракету следует при пониженной температуре (в подземном укрытии).
Причем, учитывая, что большинство ВВ выделяет при взрыве горючие газы, соотношение кислорода и горючего газа следует выбирать нестехиометрическим - кислорода должно быть чуть больше.
Чтобы получившиеся фрагменты летели продольно потоку и, следовательно, имели бо`льшую дальность и силу поражения, фрагменты имеют заранее прикрепленные в нужных местах корпуса грузики - в передней части фрагмента (все направления даны относительно направления полета ракеты). Материал грузиков - вольфрам или уран.
Для этой же цели фрагменты могут иметь расположенные внутри и/или снаружи корпуса стабилизаторы в задней части фрагментов. Стабилизаторы могут быть перпендикулярными поверхности фрагмента в этом месте, V-образными, Т-образными. Стабилизаторы с наружной части несколько увеличивают аэродинамическое сопротивление ракеты, поэтому их целесообразность следует проверить испытаниями. Стабилизаторы следует изготавливать из титана.
На фиг.1 показана развернутая на плоскость цилиндрическая поверхность корпуса ракеты, где 1 - корпус, 2 - грузики, 3 - перпендикулярные стабилизаторы. Линиями показана схема резки корпуса перфорирующими зарядами.
На фиг.2 показан вид фрагмента сбоку (вид сверху - это фиг.1), на фиг.3, 4, 5 показан вид фрагмента спереди с разными стабилизаторами: 3 - внутренние перпендикулярные, 4 - внешние перпендикулярные, 5 - Т-образные, 6 - V-образные. Стабилизаторы удобно крепить к корпусу ракеты контактной сваркой, для чего перпендикулярные и Т-образные стабилизаторы могут иметь отогнутую полочку.
Работает боеголовка так: при пролете мимо цели на минимальном расстоянии в секторе разлета фрагментов перфорирующие заряды подрываются, и фрагменты отбрасываются в стороны, причем получают некоторый наклон к периферии. Скорость разлета увеличит взрыв внутри корпуса газовой кислородно-топливной смеси.
Данная боеголовка несколько увеличит массу ракеты, но очень незначительно - чтобы разрезать вольфрам толщиной 1 мм много ВВ не надо. А вес грузиков и стабилизаторов незначителен в общей массе ракеты. Зато по эффективности такая боеголовка почти не будет уступать «традиционной», особенно на встречных курсах.
название | год | авторы | номер документа |
---|---|---|---|
ЗАРЯД СТАРОВЕРОВА - 5 | 2012 |
|
RU2486434C1 |
ОСКОЛОЧНЫЙ БОЕПРИПАС СТАРОВЕРОВА (ВАРИАНТЫ) И УСТРОЙСТВО ДЛЯ ЕГО ПРИМЕНЕНИЯ (ВАРИАНТЫ) | 2011 |
|
RU2472098C1 |
ЗАРЯД СТАРОВЕРОВА - 6 | 2012 |
|
RU2486435C1 |
СПОСОБ УЛУЧШЕНИЯ ВЗРЫВЧАТЫХ ВЕЩЕСТВ И ВЗРЫВЧАТОЕ ВЕЩЕСТВО /ВАРИАНТЫ/ | 2012 |
|
RU2513848C2 |
КУМУЛЯТИВНЫЙ ЗАРЯД СТАРОВЕРОВА-II | 2014 |
|
RU2564783C1 |
ЗАРЯД СТАРОВЕРОВА - 7 (ВАРИАНТЫ) | 2012 |
|
RU2486436C1 |
ЗАРЯД СТАРОВЕРОВА - 2 (ВАРИАНТЫ) | 2012 |
|
RU2486433C1 |
ЗАРЯД СТАРОВЕРОВА - 3 (ВАРИАНТЫ) | 2012 |
|
RU2485433C1 |
КУМУЛЯТИВНЫЙ ЗАРЯД СТАРОВЕРОВА-6 /ВАРИАНТЫ/ | 2011 |
|
RU2453795C1 |
ЗАРЯД СТАРОВЕРОВА - 4 | 2012 |
|
RU2486432C1 |
Изобретение относится к области боеприпасов. Боеголовка состоит из корпуса ракеты, имеющего с внутренней стороны перфорирующие линейные кумулятивные заряды, разрезающие корпус на фрагменты. Ракета имеет герметичный корпус, заполненный газом под давлением. В качестве таких газов могут использоваться инертные газы, например азот или аргон. Фрагменты имеют заранее прикрепленные в нужных местах корпуса грузики и стабилизаторы. Повышается эффективность боеприпаса. 6 з.п. ф-лы, 5 ил.
1. Боеголовка, состоящая из корпуса ракеты, имеющего с внутренней стороны перфорирующие линейные кумулятивные заряды, разрезающие корпус на фрагменты.
2. Боеголовка по п.1, отличающаяся тем, что получившиеся фрагменты имеют форму ромбов или прямоугольников.
3. Боеголовка по п.1, отличающаяся тем, что корпус заполняется газом под давлением - азотом или аргоном, или ацетиленом, или этиленом, или дивинилом, или метаном, или этаном.
4. Боеголовка по п.1, отличающаяся тем, что корпус заполняется под давлением смесью горючего газа с кислородом, причем количество кислорода больше стехиометрического.
5. Боеголовка по п.1, отличающаяся тем, что фрагменты имеют заранее прикрепленные в нужных местах корпуса грузики.
6. Боеголовка по п.1, отличающаяся тем, что фрагменты имеют расположенные внутри и/или снаружи корпуса стабилизаторы в задней части фрагментов.
7. Боеголовка по п.6, отличающаяся тем, что стабилизаторы перпендикулярны поверхности фрагмента или V-образные, или Т-образные.
МНОГОЦЕЛЕВОЙ СНАРЯД | 1993 |
|
RU2080548C1 |
ОСКОЛОЧНО-ФУГАСНЫЙ СНАРЯД (ЕГО ВАРИАНТЫ) | 1992 |
|
RU2018779C1 |
БОЕГОЛОВКА | 2001 |
|
RU2276769C2 |
DE 3605580 C1, 04.06.1987 | |||
RU 2062439 C1, 20.06.1996. |
Авторы
Даты
2013-10-27—Публикация
2012-09-18—Подача