СПОСОБ ОДНОВРЕМЕННОГО ВОСПРОИЗВЕДЕНИЯ ЗАДАННЫХ ЗНАЧЕНИЙ ФЛЮЕНСА НЕЙТРОНОВ И ЭКСПОЗИЦИОННОЙ ДОЗЫ ГАММА-ИЗЛУЧЕНИЯ НА ИССЛЕДОВАТЕЛЬСКОМ РЕАКТОРЕ Российский патент 2013 года по МПК G21K5/00 

Описание патента на изобретение RU2497214C2

Изобретение относится к области испытаний крупногабаритных объектов на радиационную стойкость в полях излучений исследовательских реакторов. Объектами испытаний являются образцы техники военного или гражданского назначения, предназначенные для выполнения работ в радиационных полях ядерно-технических установок или при ликвидации последствий радиационных аварий.

В качестве источника гамма-нейтронного излучения при испытаниях образцов техники широко используются исследовательские ядерные реакторы. Основное требование к методам испытаний на реакторах заключается в том, чтобы воспроизводимые условия облучения объекта были максимально приближены к реальным условиям воздействия.

Потребность в разработке предлагаемого способа обусловлена, прежде всего, несовершенством известных технологий испытаний крупногабаритных объектов. Поэтому требования нормативных документов (в частности ГОСТ РВ 15.210-2001) к методам испытаний не всегда выполнимы. При штатных режимах работы реакторов невозможно одновременно воспроизвести заданные значения флюенса нейтронов и экспозиционной дозы гамма-излучения, поскольку доза гамма-квантов на реакторах при воспроизведении заданного значения флюенса нейтронов, как правило, в несколько раз меньше требуемого значения. Например, в испытательном объеме исследовательского реактора ПРИЗ-М при значении флюенса нейтронов 1012 н/см2 доза гамма-излучения составляет 370 Р [1], что в 2-4 раза меньше нормативных требований.

Отсюда следует, что необходимы новые технические решения, позволяющие увеличивать дозу гамма-излучения в местах размещения объекта испытаний до уровня требований нормативных документов при одновременном воспроизведении заданного значения флюенса нейтронов. При этом должны обеспечиваться также требования по равномерности облучения объекта.

Известны способы формирования полей гамма-нейтронного излучения для испытаний изделий электронной техники на радиационную стойкость внутри конструкций коробчатого типа [2], цилиндров [3] или в испытательном объеме реакторного зала с помощью устройства конической формы, размещаемого между активной зоной (АЗ) реактора и объектом испытаний [4]. Все эти конструкции изготовлены из водородсодержащих материалов и кадмия. Они предназначены, в основном, для увеличения вклада вторичного гамма-излучения в испытательном объеме реактора. В результате замедления нейтронов на ядрах водорода и радиационного захвата тепловых нейтронов кадмием образуется вторичное гамма излучение, вклад которого в испытательном объеме может значительно превышать первичное гамма-излучение реактора. В дальнейшем эти конструкции будем называть конверторами нейтронов в гамма-кванты. Конструкции конверторов, исследуемых в работах [2, 3], используются только для испытаний малогабаритных изделий в связи с большой неоднородностью поля излучений в их полости. Конвертор конической формы [4] позволяет формировать однородное поле в большом испытательном объеме путем ослабления излучений в центральной части объекта. В результате снижаются дозовые нагрузки на объект испытаний и деформируется энергетический спектр нейтронов. Компенсировать дозовую нагрузку в данном случае можно только путем увеличения мощности реактора или времени облучения, что с точки зрения оперативности проведения испытаний и экономических показателей не всегда целесообразно. Кроме того, доза гамма-излучения из-за сравнительно небольших размеров конвертора возрастает незначительно (не более 30%).

Наиболее близким по техническому решению задачи (прототипом предлагаемого способа) является способ формирования поля гамма-нейтронного излучения [5] на основе суперпозиции полей излучений от исследовательского реактора и устройств - конверторов нейтронов в гамма-кванты. В качестве конверторов в данном способе используются пластины водородсодержащего материала (плексигласа), чередующиеся с пластинами кадмия. Однородное поле излучений в испытательном объеме создается за счет перемещения источников излучений вдоль объекта испытаний и расположения двух конверторов симметрично АЗ реактора. Размещение конверторов вне сектора прямого воздействия излучений реактора на объект испытаний позволяет использовать в конверсионном процессе нейтроны с других радиальных направлений, не участвующие в создании дозовой нагрузки на объект испытаний. Кроме того, конверторы не экранируют объект испытаний от излучения реактора и увеличивают дозу вторичного гамма-излучения по сравнению с первичным гамма-излучением реактора в несколько раз.

Несмотря на очевидные преимущества, у способа-прототипа имеются и определенные недостатки. По данному способу невозможно воспроизвести требуемую дозу гамма-излучения (Dзад) одновременно с воспроизведением заданного значения флюенса нейтронов (Фзад) в широком диапазоне значений Dзадзад при наличии только двух конверторов с постоянными размерами, что ограничивает возможности использования способа. При изменении положения конверторов относительно АЗ и объекта испытаний значения D/Ф изменяются в пределах не более 1,5 раз [1]. Для обеспечения испытаний этого недостаточно. Диапазон значений D/Ф необходимо увеличить в несколько раз.

Цель изобретения заключается в разработке способа одновременного воспроизведения заданных значений флюенса нейтронов и экспозиционной дозы гамма-излучения в испытательном объеме реактора в широком диапазоне значений Dзадзад (до 2,5 раз и более).

Технический результат достигается тем, что количество (n) и толщину (S) устройств-конверторов, обеспечивающих одновременное воспроизведение заданных параметров излучений, определяют по функциональным зависимостям и , где D=Dзад, Ф=Фзaд, F - выход нейтронов из АЗ реактора, L - длина объекта испытаний. Затем облучают объект испытаний при выбранной мощности реактора (F) в течение времени , где k - выход нейтронов из АЗ реактора на мощности 1 Вт, В - параметр, определяемый по зависимости B(S,n,L).

Новыми действиями в предлагаемом способе (по сравнению с прототипом) являются:

- выбор количества конверторов и их толщины в зависимости от заданных для воспроизведения параметров излучений;

- определение длительности облучения объекта в зависимости от выбранной толщины, количества конверторов и длины объекта испытаний.

Возможные варианты размещения конверторов у АЗ реактора ПРИЗ-М представлены на Фиг.1 (вид сверху) и Фиг.2 (вид сбоку по стрелке А) при размещении двух конверторов по варианту 1а и четырех конверторов по варианту 1а+1b. Обозначения: 1а и 1b - конверторы, 2 - объект испытаний, 3 - активная зона реактора, 4 - подвижная платформа, R1 и R2 - расстояния от центра АЗ до центра поверхности конвертора со стороны источника излучений при размещении конверторов по варианту 1а и по варианту 1b, соответственно. Возможны и другие варианты размещения конверторов.

Оптимальный вариант размещения конверторов относительно АЗ реактора и объекта испытаний выбирают таким образом, чтобы конверторы не затеняли объект испытаний, не влияли на реактивность размножающей системы и не создавали помех персоналу, обслуживающему реактор. На реакторах типа ПРИЗ-М (со сферическим отражателем нейтронов толщиной 10 см вокруг делящегося материала) конверторы практически не влияют на реактивность размножающейся системы при их размещении на расстояниях более 70 см от АЗ.

Конструкция конверторов, используемая в расчетных и экспериментальных исследованиях, приведена на Фиг.3 и представляет собой "сэндвич" из набора пластин водородсодержащего материала (плексигласа) толщиной 1 см (1) и кадмия толщиной 0,1 см (2), чередующихся между собой. Площадь пластин 110×80 см2.

Результаты расчетных исследований с использованием программы MCNP [6] приведены в табл.1 и на Фиг.4 и Фиг.5 (сплошные линии). Расчеты подтверждены экспериментальными данными. Измерения экспозиционной дозы гамма-излучения проведены дозиметрами СГД-8, флюенс быстрых нейтронов измерен активационными детекторами. Погрешности расчетных и экспериментальных данных с доверительной вероятностью 0,95 не превышают 15%. Выход нейтронов (F) из АЗ реактора контролировался штатным измерительным каналом с камерой деления КНТ-5.

На Фиг.4 приведены зависимости отношения экспозиционной дозы гамма-излучения (D) к флюенсу нейтронов (Ф) с энергиями (Е) более 0,1 МэВ от толщины (S) конвертора при разных их количествах (n) и длинах (L) объекта испытаний. Зависимость 1 приведена для n=2 и L=4 м; 2 - для n=4 и L=3 м; 3 - для n=4 и L=4 м; I - экспериментальные данные.

На Фиг.5 приведены зависимости параметра В=Ф/F (флюенса нейтронов с Е>0,1 МэВ в испытательном объеме реакторного зала, приведенного к одному выходящему из АЗ нейтрону) от толщины (S) конвертора при разных их количествах (n) и длинах (L) объекта испытаний. Обозначения те же, что на Фиг.4.

Таблица 1 Параметры излучений в испытательном объеме реактора при разных вариантах размещения конверторов (L=4 м, S=13,2 см) Положение конверторов B=Ф/F·10-6, см-2 D/F·10-15, Р/н Вклад конверторов Эффект конверторов, ε D/Ф·10-10, P см2 ζn ζy без конверторов 2,94 1,08 - - - 3,67 n=2, вариант 1а 3,7 3,52 1,25 3,3 2,6 9,59 n=4, вариант 1a+1b 4,1 8,17 1,39 7,6 5,4 20,1 Примечание к таблице 1: Ф и D - соответственно значения флюенса нейтронов с E>0,1 МэВ и экспозиционной дозы гамма-излучения; ζn=(Ф/F)р+к/(Ф/F)р - отношение флюенса нейтронов с Е>0,1 МэВ к их выходу из АЗ с конверторами (р+к) и без конверторов (р); ζу=(D/F)р+к/(D/F)р - отношение доз γ-излучения с конверторами и без конверторов к выходу нейтронов из АЗ; ε=ζγn - коэффициент, характеризующий эффект конвертора.

Данные, приведенные в таблице 1, свидетельствуют о том, что вклад рассеянных нейтронов от конверторов не является определяющим в полном потоке и составляет 25% (при размещении двух конверторов) и 39% (при размещении четырех конверторов). При этом доза гамма-излучения увеличивается соответственно в 3,3 и 7,6 раза. Из результатов исследований, приведенных на Фиг.4 и Фиг.5, следует, что наиболее эффективно участвуют в конверсионном процессе и в процессе рассеяния нейтронов ближние к источнику пластины, поскольку в этих слоях больше плотность потока тепловых нейтронов и лучше альбедные характеристики по сравнению с последующими слоями. С увеличением количества конверторов или их толщины диапазон воспроизведения значений D/Ф также увеличивается. Например, при n=2 и изменении толщины конвертора от 1,1 см до 13,2 см (зависимость 1) значение D/Ф увеличивается в 1,6 раза, а при n=4 этот диапазон возрастает до 2,5 раз (зависимость 3), т.е. изменяя количество и толщину конверторов, можно добиться увеличения диапазона значений D/Ф до 3,5 раз (отношение максимального значения D/Ф при n=4, S=13,2 см к минимальному - при n=2, S=1,1 см).

Исходными данными для определения длительности (t) облучения объекта испытаний являются:

- флюенс нейтронов с Е>0,1 МэВ в испытательном объеме;

- интегральный выход нейтронов из АЗ за все время облучения, определяемый по формуле

где к - выход нейтронов из АЗ реактора на мощности 1 Вт (для реактора ПРИЗ-М к=4·1010 н/с); Р - рабочая мощность реактора;

- зависимости B(S,n,L), приведенные на Фиг.5. Поскольку В=Ф/Р, при Ф=Фзад значение t определяется по формуле

Скорость (V) движения платформы с источниками излучений и число реверсных направлений движения (m) определяются по формуле

Требуемая скорость движения платформы может быть воспроизведена с помощью шагового двигателя FL110STH150 с электронным блоком управления AMD-28.

Примеры использования предлагаемого способа при испытании крупногабаритных объектов на радиационную стойкость:

1. По условию задачи для объекта длиной 4 м в испытательном объеме реактора требуется одновременно воспроизвести следующие заданные значения флюенса нейтронов с с Е>0,1 МэВ и экспозиционной дозы гамма-излучения: Фзад=1012 н/см2, Dзад=500 Р. В соответствии с графиком 1 на Фиг.4 условие D/Ф=Dзадзад=5·10-10 Р·см2/н выполняется при размещении у АЗ двух конверторов по варианту 1a (R1=80 см) с одной парой пластин (S=1,1 см). При этой толщине конвертора значение параметра В=3,3·10-6 см-2 (определяется по графику 1 на Фиг.5). Длительность облучения объекта испытаний при рабочей мощности реактора 1000 Вт определяется по формуле (2) и равна 7,58·103 с или 2,1 часа. При этом скорость движения платформы, определяемая по формуле (3) без реверсных направлений движения, должна быть равна 3,2 см/мин.

2. При том же заданном значении флюенса нейтронов требуется воспроизвести Dзад=1300 Р. В данном случае, в соответствии с графиком 3 на Фиг.4, условие D/Ф=Dзадзад=13·10-10 Р·см2/н выполняется при размещении 4 конверторов (R1=80 см, R2=142 см) с тремя парами пластин (S=3,3 см) в каждом. Значение параметра B, определяемое по графику 3 на Фиг.5, равно 3,7·10-6 см-2. Тогда для реализации заданных значений параметров излучений длительность облучения объекта и скорость движения платформы должны быть соответственно равны 6,76·103 с (1,88 часа) и 3,5 см/мин.

Результаты измерений в процессе облучения сравнивались с прогнозируемыми значениями. Расхождения данных не превышали 20%, что свидетельствует о высокой надежности предлагаемого способа.

Таким образом, выбирая количество конверторов и их толщину, можно варьировать значением дозы гамма-излучения относительно заданного значения флюенса нейтронов в достаточно широком диапазоне значений D/Ф.

Источники информации

1. Пикалов Г.Л., Рымарь А.И., Костяев С.В., Краснокутский И.С. Формирование поля гамма-нейтронного излучения на реакторе ПРИЗ-М для испытаний крупногабаритной техники на радиационную стойкость. Вопросы атомной науки и техники. Серия: Физика радиационного воздействия на радиоэлектронную аппаратуру, вып.2, - Лыткарино, 2011, стр.62.

2. Кувшинов М.И., Кошелев А.С., Смирнов И.Г. и др.. Трансформация излучений быстрых нейтронов импульсных реакторов БИР-2М, БР-1, БИГР с помощью n-γ конверторов. Вопросы атомной науки и техники. Серия: Физика ядерных реакторов, вып.2, - Лыткарино, 1992, стр.3.

3. Васильев А.В., Ненадышин Н.Н., Романенко А.А. Конвертор гамма-нейтронного поля импульсного ядерного реактора Барс-4. Научно-технический сборник «Радиационная стойкость электронных систем -Стойкость-2007», вып 10, - М., МИФИ, 2007, стр.169.

4. Грицай В.Н., Гуликов Ф.Ф., Казанцев В.В., Пикалов Г.Л., Солодовников Н.И. Устройство для формирования поля радиационного нагружения объектов при их испытании на радиационную стойкость. Патент РФ на изобретение №2284068 от 24.03.2005 г.

5. Пикалов Г.Л., Рымарь А.И., Костяев С.В., Краснокутский И.С., Комаров Н.А. Способ формирования полей гамма-нейтронного излучения на исследовательских реакторах. Патент РФ на изобретение №2404467 от 22.10.2009 г.

6. Monte Carlo N-Particle Transport Code System (MCNP). Los Alamos National Laboratory. New Mexico. 2000.

Похожие патенты RU2497214C2

название год авторы номер документа
СПОСОБ ОДНОВРЕМЕННОГО ВОСПРОИЗВЕДЕНИЯ ЗАДАННЫХ ЗНАЧЕНИЙ ФЛЮЕНСА НЕЙТРОНОВ И ЭКСПОЗИЦИОННОЙ ДОЗЫ ГАММА-ИЗЛУЧЕНИЯ НА ИССЛЕДОВАТЕЛЬСКИХ РЕАКТОРАХ 2016
  • Пикалов Георгий Львович
  • Краснокутский Игорь Сергеевич
  • Койнов Дмитрий Васильевич
  • Артамонов Дмитрий Николаевич
RU2641890C2
СПОСОБ ФОРМИРОВАНИЯ ПОЛЯ ГАММА-НЕЙТРОННОГО ИЗЛУЧЕНИЯ НА ИССЛЕДОВАТЕЛЬСКИХ РЕАКТОРАХ 2009
  • Пикалов Георгий Львович
  • Рымарь Александр Иванович
  • Краснокутский Игорь Сергеевич
  • Костяев Сергей Валентинович
  • Комаров Николай Алексеевич
RU2404467C1
Способ воспроизведения норм испытаний крупногабаритных объектов на исследовательских реакторах 2019
  • Пикалов Георгий Львович
  • Бурлака Игорь Андреевич
  • Бахматов Евгений Юрьевич
  • Койнов Дмитрий Васильевич
  • Кораблев Михаил Юрьевич
RU2713924C1
Способ одновременного воспроизведения заданных значений флюенса нейтронов и экспозиционной дозы гамма-излучения на исследовательских реакторах 2018
  • Пикалов Георгий Львович
  • Бурлака Игорь Андреевич
  • Николаев Олег Александрович
  • Краснокутский Игорь Сергеевич
  • Кораблев Михаил Юрьевич
RU2686838C1
Устройство для формирования параметров излучений в испытательном объеме исследовательского реактора 2021
  • Пикалов Георгий Львович
  • Койнов Дмитрий Васильевич
  • Кораблев Михаил Юрьевич
  • Бахматов Евгений Юрьевич
  • Точилин Олег Николаевич
RU2755143C1
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ПОЛЯ РАДИАЦИОННОГО НАГРУЖЕНИЯ ОБЪЕКТОВ ПРИ ИХ ИСПЫТАНИИ НА РАДИАЦИОННУЮ СТОЙКОСТЬ 2005
  • Грицай Василий Николаевич
  • Гуликов Андрей Алексеевич
  • Казанцев Василий Васильевич
  • Пикалов Георгий Львович
  • Солодовников Николай Иванович
RU2284068C1
СПОСОБ ОПРЕДЕЛЕНИЯ ЭНЕРГЕТИЧЕСКОГО СПЕКТРА ГАММА-КВАНТОВ 2012
  • Пикалов Георгий Львович
  • Махмудов Каримжон Бобожонович
  • Чуприн Игорь Александрович
RU2497157C1
ТРАНСФОРМАТОР ГАММА-НЕЙТРОННОГО ИЗЛУЧЕНИЯ 2014
  • Пикалов Георгий Львович
  • Чуприн Игорь Александрович
  • Исаев Валерий Абдуллаевич
  • Койнов Дмитрий Васильевич
RU2559198C1
СПОСОБ ИСПЫТАНИЯ ПРОТИВОРАДИАЦИОННОЙ ЗАЩИТЫ ОБЪЕКТА 2009
  • Пикалов Георгий Львович
  • Костяев Сергей Валентинович
  • Класс Елена Викторовна
  • Краснокутский Игорь Сергеевич
  • Стрелков Юрий Николаевич
  • Савельев Олег Анатольевич
RU2409875C1
СПОСОБ МОДЕЛИРОВАНИЯ КОМПЛЕКСНОГО РАДИАЦИОННОГО ВОЗДЕЙСТВИЯ НА ОБЪЕКТ ИССЛЕДОВАНИЯ 2012
  • Воронцов Сергей Владимирович
  • Девяткин Андрей Александрович
  • Воинов Михаил Алексеевич
  • Довбыш Леонид Егорович
  • Мысков Геннадий Алексеевич
  • Горностай-Польский Станислав Аркадьевич
  • Голубева Ольга Альбертовна
RU2488182C1

Иллюстрации к изобретению RU 2 497 214 C2

Реферат патента 2013 года СПОСОБ ОДНОВРЕМЕННОГО ВОСПРОИЗВЕДЕНИЯ ЗАДАННЫХ ЗНАЧЕНИЙ ФЛЮЕНСА НЕЙТРОНОВ И ЭКСПОЗИЦИОННОЙ ДОЗЫ ГАММА-ИЗЛУЧЕНИЯ НА ИССЛЕДОВАТЕЛЬСКОМ РЕАКТОРЕ

Изобретение относится к области испытаний на радиационную стойкость крупногабаритных объектов военного или гражданского назначения, в том числе предназначенных для выполнения работ в радиационных полях ядерно-технических установок или при ликвидации последствий радиационных аварий. Заявленный способ характеризуется тем, что в поле излучений с размерами объекта испытаний устанавливают функциональные зависимости отношения экспозиционной дозы гамма-излучения к флюенсу нейтронов и флюенса нейтронов, приведенного к одному выходящему из активной зоны нейтрону, от длины объекта, толщины и количества конверторов излучения при выбранном варианте их размещения относительно активной зоны и объекта испытаний. Далее с учетом полученных данных и расчетных параметров выбирают толщину и количество конверторов и рассчитывают длительность облучения объекта, после чего объект подвергается соответствующему облучению. Технический результат изобретения заключается в одновременном воспроизведении заданных значений параметров гамма-нейтронного излучения в более широком диапазоне. 5 ил., 1 табл.

Формула изобретения RU 2 497 214 C2

Способ одновременного воспроизведения заданных значений флюенса нейтронов (Фзад) и экспозиционной дозы гамма-излучения (Dзад) на исследовательском реакторе при испытании крупногабаритных объектов на радиационную стойкость, основанный на суперпозиции полей излучений от реактора и специальных устройств, конвертирующих тепловые нейтроны в гамма-кванты, расположенных вне сектора прямого воздействия излучений реактора симметрично нормали, проходящей от центра активной зоны (AЗ) на продольную ось объекта испытаний, и перемещаемых во время испытаний вдоль объекта, отличающийся тем, что количество (n) и толщину (S) устройств - конверторов, обеспечивающих одновременное воспроизведение заданных параметров излучений, определяют по функциональным зависимостям D Ф ( S , n , L ) и Ф F ( S , n , L ) , где D=Dзад, Ф=Фзaд, F - выход нейтронов из AЗ реактора, L - длина объекта испытаний при выбранной мощности реактора (Р) в течение времени t=Фзaд/кBP, где к - выход нейтронов из AЗ реактора на мощности 1 Вт, В-параметр, определяемый по зависимости B(S,n,L).

Документы, цитированные в отчете о поиске Патент 2013 года RU2497214C2

СПОСОБ ФОРМИРОВАНИЯ ПОЛЯ ГАММА-НЕЙТРОННОГО ИЗЛУЧЕНИЯ НА ИССЛЕДОВАТЕЛЬСКИХ РЕАКТОРАХ 2009
  • Пикалов Георгий Львович
  • Рымарь Александр Иванович
  • Краснокутский Игорь Сергеевич
  • Костяев Сергей Валентинович
  • Комаров Николай Алексеевич
RU2404467C1
УСТРОЙСТВО ДЛЯ ФОРМИРОВАНИЯ ПОЛЯ РАДИАЦИОННОГО НАГРУЖЕНИЯ ОБЪЕКТОВ ПРИ ИХ ИСПЫТАНИИ НА РАДИАЦИОННУЮ СТОЙКОСТЬ 2005
  • Грицай Василий Николаевич
  • Гуликов Андрей Алексеевич
  • Казанцев Василий Васильевич
  • Пикалов Георгий Львович
  • Солодовников Николай Иванович
RU2284068C1
СПОСОБ, СЕРВЕР И СИСТЕМА ДЛЯ ИДЕНТИФИКАЦИИ ЧЕЛОВЕКА 2012
  • Ферлин Бенуа Чарльз Маурис Фернанд
  • Ризет Алексис
  • Алебойе Пейман
RU2610419C2
Прибор для построения линий среза 1980
  • Братанов Валерий Павлович
  • Бергер Эмиль Григорьевич
  • Табацков Вячеслав Петрович
  • Шерстобитова Татьяна Михайловна
  • Ханнанов Марат Габдрухакимович
SU962020A1

RU 2 497 214 C2

Авторы

Пикалов Георгий Львович

Базака Юрий Григорьевич

Комаров Николай Алексеевич

Краснокутский Игорь Сергеевич

Рымарь Александр Иванович

Даты

2013-10-27Публикация

2011-08-29Подача