СПОСОБ УПРАВЛЕНИЯ УСТРОЙСТВОМ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ В ПИТАЮЩЕЙ СЕТИ Российский патент 2013 года по МПК H02J3/18 

Описание патента на изобретение RU2498475C2

Изобретение относится к области электротехники и электроэнергетики и может быть использовано в автономных или энергетических системах электроснабжения промышленных предприятий при наличии значительной нелинейной нагрузки, генерирующей высшие гармонические составляющие напряжения и тока, для приведения в соответствие с требованиями стандартов коэффициента искажения синусоидальности и коэффициента n-ой гармонической составляющей кривой питающего напряжения.

Известен способ управления устройством компенсации реактивной мощности [Патент РФ №2354025, H02J 3/18. Способ компенсации высших гармоник и коррекции коэффициента мощности сети / Б.Н. Абрамович, В.В. Полищук, Ю.А. Сычев. - опубл. 27.09.2009], при котором измеряют мгновенные значения напряжения сети, выходных токов нелинейной нагрузки и статического компенсатора до фазовой синхронизации напряжения и тока, сигналы от датчика напряжения обрабатываются фазовым преобразователем, а после фазовой синхронизации выходные сигналы блока фазовой синхронизации умножаются на сигнал задания по току регулятора напряжения накопительного конденсатора, обрабатываются фазовым преобразователем, затем сравниваются с измеренными сигналами тока нелинейной нагрузки, заданного и фактического тока инвертора, и полученный в результате этого сигнал рассогласования используют в качестве управляющего сигнала для формирования релейными регуляторами импульсов управления статическим компенсатором.

Однако в указанном способе ограничена полоса пропускания инвертора и выходной пассивный фильтр не позволяет в полной мере отработать высшие гармоники.

Кроме того, известен способ управления устройством компенсации реактивной мощности, содержащего параллельно подключенные к шинам переменного тока нелинейную нагрузку - тиристорно-реакторную группу, конденсаторные батареи - фильтры высших гармоник и статический компенсатор реактивной мощности на полностью управляемых ключах [Патент РФ №2280934, H02J 3/18. Способ управления устройством компенсации реактивной мощности / М.И. Мазуров, А.В. Николаев, Р.А. Дайновский, Б.П. Краснова. - опубл. 27.07.2006], который является прототипом предлагаемого изобретения, заключающийся в том, что измеряют напряжение и на шинах переменного тока, измеряют мгновенные значения выходных токов нелинейной нагрузки и статического компенсатора, сравнивают напряжение и на шинах переменного тока с уставками Umax и Umin, формируют управляющие сигналы, причем при превышении напряжением и уставки Umax отключают фильтры высших гармоник, измеряют параметры гармонических составляющих тока нелинейной нагрузки - величину и фазу и формируют в токе статического компенсатора гармонические составляющие пропорционально и противофазно измеренным гармоническим составляющим тока нелинейной нагрузки, а при снижении напряжения и ниже Umin отключают нелинейную нагрузку и включают фильтры высших гармоник.

Однако в силу того, что фильтры высших гармоник отключаются дискретно, становится невозможным непрерывное поддержание заданного коэффициента нелинейных искажений напряжения сети. Кроме того, фильтр высших гармоник обладает большими массогабаритными показателями, поскольку его конденсаторы и индуктивности выбираются из условия подавления 5, 7, 9, 11 и т.д. гармонических составляющих.

Задача изобретения заключается в повышении качества электрической энергии питающей сети за счет исключения в сетевом токе гармонических составляющих, генерируемых нелинейной нагрузкой, путем компенсации выбранных гармонических составляющих, а также снижении массогабаритных показателей фильтров компенсирующего устройства.

Задача достигается тем, что в предлагаемом способе управления устройством компенсации реактивной мощности в питающей сети измеряют мгновенные значения трехфазного тока сети, выделяют выбранные гармонические составляющие этого тока, производят пофазное сложение данных гармонических составляющих, формируют токи коррекции для каждой фазы сетевого тока, содержащие выделенные гармонические составляющие и имеющие фазовый сдвиг 180 электрических градусов, и, выдавая в каждую фазу соответствующие токи, добиваются компенсации гармонических составляющих сетевого тока.

На чертеже приведена одна из возможных структурных схем, реализующих предлагаемый способ. Структурная схема содержит трехфазный источник питающей сети Uс (блок 1), каждая фаза которого представляет собой последовательное соединение источника синусоидальной ЭДС ea, eb, ec, активного сопротивления внешней сети Rac, Rbc, Rcc и индуктивности внешней сети Lac, Lbc, Lcc. Выходные фазы источника питающей сети Uc (блок 1) через первичные обмотки датчиков тока ДТaнн, ДТbнн, ДТснн (блоки 2, 3, 4) соединены с трехфазной нагрузкой (блок 5), которая состоит из нелинейной НН и линейной ЛН частей, и выходами статического компенсатора СК (блок 6) через первичные обмотки датчиков тока статического компенсатора ДТаск, ДТb, ДТсск (блоки 7, 8, 9). Вторичные обмотки датчиков тока ДТaнн, ДТbнн, ДТснн (блоки 2, 3, 4) соединены с микроконтроллером МК (блок 10) и входами схем выделения гармонических составляющих в сетевом токе Wpk…Wpn (блоки 11…16), выходы которых соединены с входами схем сложения (блоки 17, 18, 19). Выходы схем сложения (блоки 17, 18, 19) соединены с входами других схем сложения (блоки 20, 21, 22), выходы которых соединены с инвертирующими звеньями (блоки 23, 24, 25). Выходы инвертирующих звеньев соединены с входами системы импульсно-фазового управления СИФУ (блок 26). Выходы СИФУ соединены с управляющими входами статического компенсатора СК (блок 6). Вторичные обмотки датчиков тока статического компенсатора ДТaск, ДТd, ДТcск (блоки 7, 8, 9) соединены с входами схем выделения гармонических составляющих токов Wp1A, Wp1B, Wp1C (блоки 27, 28, 29), выходы которых соединены с входами схем сложения (блоки 20, 21, 22).

Источник питающей сети Uc (блок 1) может представлять собой промышленную сеть, синхронный генератор или статический преобразователь с переменным стабилизированным напряжением по любой из известных схем (см. B.C. Руденко, В.И. Сенько, И.М. Чиженко. Основы преобразовательной техники. - М.: Высш. школа, 1980. - 424 с.). Датчики тока ДТaнн, ДТbнн, ДТснн (блоки 2, 3, 4) и ДТa, ДТbск, ДТcск (блоки 7, 8, 9) - типовые трансформаторы тока. Нелинейная часть НН трехфазной нагрузки (блок 5) может представлять собой выпрямитель по любой из известных схем (см. B.C. Руденко, В.И. Сенько, И.М. Чиженко. Основы преобразовательной техники. - М.: Высш. школа, 1980. - 424 с.), а линейная часть ЛН - последовательное или параллельное соединение резистора и дросселя. Микроконтроллер МК (блок 10) представляет собой цифровой измерительный блок для контролирования настройки частоты блоков выделения гармонических составляющих токов. Схемы выделения гармонических составляющих тока Wpk…Wpn (блоки 11…16) и Wp1A, Wp1B, Wp1C (блоки 27, 28, 29) могут представлять собой резонансные звенья, например, или реализуемые в аналоговом виде (см. Теория автоматического управления. Ч1. Теория линейных систем автоматического управления. Под ред. А.А. Воронова. Учеб. пособие для вузов. - М.: Высш. школа, 1977), а для исключения температурной зависимости параметров звеньев в цифровом виде (см. Сергиенко А.Б. Цифровая обработка сигналов. - СПб.: Питер. - 2006. - 751 с.). Система импульсно-фазового управления СИФУ (блок 26) представляет собой стандартную систему управления, реализующую вертикальный принцип (см. B.C. Руденко, В.И. Сенько, И.М. Чиженко. Основы преобразовательной техники. - М.: Высш. школа, 1980). Статический компенсатор СК (блок 6) - это инвертор напряжения с выходным однозвенным LC-фильтром с широтно-импульсной модуляцией, работающий на высокой частоте переключения силовых ключей (см. B.C. Руденко, В.И. Сенько, И.М. Чиженко. Основы преобразовательной техники. - М.: Высш. школа, 1980).

Способ осуществляется следующим образом. При нелинейной нагрузке и синусоидальном источнике питающего напряжения, нагрузка начинает генерировать несинусоидальный ток, который содержит гармонические составляющие. Этот несинусоидальный ток суммируется с сетевым током и искажает форму последнего. При протекании искаженного сетевого тока по фазным сопротивлениям электроэнергетической системы возникают несинусоидальные падения напряжений, которые искажают форму сетевого напряжения. Таким образом, мгновенные значения сетевого тока в каждой фазе измеряются с помощью датчиков тока нелинейной нагрузки ДТaнн, ДТbнн, ДТcнн. Измеренные значения токов попадают в схемы выделения гармонических составляющих тока Wpk…Wpn, в которых происходит резонансное выделение необходимых гармонических составляющих для формирования управляющих сигналов системы импульсно-фазового управления СИФУ. Следует отметить, что настройка схемы выделения гармонических составляющих тока производится на основе известного гармонического состава сетевого тока. Для выделения гармонической составляющей с частотой 100 Гц, а, следовательно, циклической частотой ω=2π·100≈628,31 рад/с необходимо выставить вычисленный параметр в передаточную функцию резонансного звена .

В результате на заданной частоте достигается достаточно большой коэффициент усиления, при этом на других частотах этот коэффициент усиления крайне мал. Таким образом, выделенные в блоках 11…16 гармонические составляющие токов от k-ой до n-ой складываются пофазно в блоках сложения 17…22 и проходят через инвертирующие звенья, которые создают в каждой фазе сдвиг в 180 электрических градусов, необходимый для создания отрицательной обратной связи. Так создаются управляющие сигналы для системы импульсно-фазового управления. Система импульсно-фазового управления формирует высокочастотные импульсы управления для переключения силовых ключей статического компенсатора (СК), который преобразует энергию источника постоянного напряжения в токи, определяемые спектром управляющих сигналов. С выхода СК сигналы поступают через первичные обмотки датчиков тока статического компенсатора ДТa, ДТbск, ДТcск на входные зажимы нелинейной нагрузки НН, компенсируя выделенные гармонические составляющие. Для исключения основной гармонической составляющей в выходном токе статического компенсатора мгновенные значения этого тока измеряются с помощью датчиков тока статического компенсатора ДТa, ДТbск, ДТcск, после чего в них с использованием схем выделения гармонических составляющих токов Wp1A, Wp1B, Wp1C происходит выделение основной гармонической составляющей аналогично выделению гармонических составляющих в схемах Wpk…Wpn, после чего данные сигналы суммируются в схемах сложения с другими выделенными гармоническими составляющими токов. Для учета изменения частоты основной гармонической составляющей сетевого тока в системе применяется микроконтроллер (МК), который на основании измеренных датчиками токов нелинейной нагрузки ДТaнн, ДТbнн, ДТcнн получает значение частоты основной гармонической составляющей сетевого тока и создает управляющие сигналы по заданному в микроконтроллере алгоритму для изменения настроечных параметров схем выделения гармонических составляющих токов Wp1A, Wp1B, Wp1C и Wpk…Wpn.

Подавление высших гармонических составляющих в предложенном способе происходит за счет подавления до необходимого уровня выбранных гармонических составляющих сетевого тока путем их компенсации с использованием отрицательной обратной связи по выбранным гармоническим составляющим и дополнительного источника мощности.

Докажем, что в предложенном способе повышения качества электрической энергии происходит уменьшение выбранных гармонических составляющих. Рассмотрим изображения выбранной i-ой гармонической составляющей для одной из фаз электрической сети.

где - сетевой ток по i-ой гармонической составляющей тока;

- ток, потребляемый статическим компенсатором по i-ой гармонической составляющей тока;

- ток, генерируемый нелинейной нагрузкой по i-ой гармонической составляющей.

В соответствии с представленной структурной схемой устройства, ток i-ой гармонической оставляющей, потребляемый статическим компенсатором, может быть найден по выражению:

где Yi(s) - передаточная функция системы импульсно-фазового управления СИФУ по i-ой гармонической составляющей тока;

Kcкj - коэффициент передачи статического компенсатора СК по j-ой гармонической составляющей тока;

Wpi(s) - передаточная функция схемы выделения j-ой гармонической составляющей тока Wpk…Wpn; Wp1(s) - передаточная функция схемы выделения основной гармонической составляющей тока Wp1A, Wp1B, Wp1C.

На основании выражений (1) и (2) выразим - сетевой ток по i-ой гармонической составляющей:

В выражении (3) выделим передаточную функцию схемы выделения i-ой гармонической составляющей нулевой последовательности:

Тогда после приведения выделенной передаточной функции (4) к общему знаменателю изображение сетевого тока по i-ой гармонической составляющей:

Подставляя в уравнение (5) s=jωl, определим значение l-ой гармонической составляющей в сетевом токе:

Из выражения (6) видно, что l-ая гармоническая составляющая скомпенсирована и отсутствует в сетевом токе.

Таким образом, предлагаемый способ позволяет исключить в сетевом токе гармонические составляющие, генерируемые нелинейной нагрузкой без применения дополнительных силовых фильтрующих LC-цепей.

Похожие патенты RU2498475C2

название год авторы номер документа
СПОСОБ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ СТАТИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЕМ ПРИ НЕСИММЕТРИЧНОЙ НАГРУЗКЕ 2010
  • Харитонов Сергей Александрович
  • Бородин Николай Иванович
  • Коробков Дмитрий Владиславович
  • Хлебников Алексей Сергеевич
  • Гейст Андрей Викторович
RU2442275C1
СПОСОБ ПОВЫШЕНИЯ КАЧЕСТВА ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ 2011
  • Харитонов Сергей Александрович
  • Бородин Николай Иванович
  • Лыкин Анатолий Владимирович
  • Бородин Дмитрий Николаевич
  • Завертан Сергей Николаевич
  • Машинский Вадим Викторович
RU2475914C1
СПОСОБ УПРАВЛЕНИЯ СТАТИЧЕСКИМИ СТАБИЛИЗИРОВАННЫМИ ИСТОЧНИКАМИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ, РАБОТАЮЩИМИ ПАРАЛЛЕЛЬНО НА ОБЩУЮ НАГРУЗКУ ПРИ ЕЕ НЕСИММЕТРИИ 2011
  • Бородин Николай Иванович
  • Харитонов Сергей Александрович
  • Коробков Дмитрий Владиславович
  • Китапбаев Архат Маратович
  • Завертан Сергей Николаевич
  • Машинский Вадим Викторович
RU2472269C1
ВЕКТОРНЫЙ СПОСОБ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ СТАТИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЕМ ПРИ НЕСИММЕТРИЧНОЙ НАГРУЗКЕ 2010
  • Харитонов Сергей Александрович
  • Бородин Николай Иванович
  • Коробков Дмитрий Владиславович
  • Хлебников Алексей Сергеевич
  • Гейст Андрей Викторович
RU2444833C1
СПОСОБ УПРАВЛЕНИЯ СТАТИЧЕСКИМИ СТАБИЛИЗИРОВАННЫМИ ИСТОЧНИКАМИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ, РАБОТАЮЩИМИ ПАРАЛЛЕЛЬНО НА ОБЩУЮ НАГРУЗКУ ПРИ ЕЕ НЕСИММЕТРИИ 2011
  • Бородин Николай Иванович
  • Харитонов Сергей Александрович
  • Ковалёв Антон Павлович
  • Коробков Дмитрий Владиславович
  • Машинский Вадим Викторович
RU2460194C1
СПОСОБ УПРАВЛЕНИЯ СТАТИЧЕСКИМИ СТАБИЛИЗИРОВАННЫМИ ИСТОЧНИКАМИ ПЕРЕМЕННОГО НАПРЯЖЕНИЯ, РАБОТАЮЩИМИ ПАРАЛЛЕЛЬНО НА ОБЩУЮ НАГРУЗКУ 2003
  • Бородин Н.И.
  • Харитонов С.А.
RU2256274C1
ГИБРИДНЫЙ КОМПЕНСАТОР ПАССИВНОЙ МОЩНОСТИ И СПОСОБ УПРАВЛЕНИЯ ИМ 2001
  • Сидоров С.Н.
RU2187872C1
ВЕКТОРНЫЙ СПОСОБ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ СТАТИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЕМ ПРИ НЕСИММЕТРИЧНОЙ НАГРУЗКЕ 2008
  • Бородин Николай Иванович
  • Харитонов Сергей Александрович
  • Жораев Тимур Юлдашевич
RU2394346C1
СПОСОБ СИНХРОНИЗАЦИИ И ПОДКЛЮЧЕНИЯ В РЕЖИМ ПАРАЛЛЕЛЬНОЙ РАБОТЫ РЕГУЛИРУЕМОГО СТАТИЧЕСКОГО ИСТОЧНИКА ПЕРЕМЕННОГО НАПРЯЖЕНИЯ И ИСТОЧНИКА ПЕРЕМЕННОГО НАПРЯЖЕНИЯ 2008
  • Бородин Николай Иванович
  • Харитонов Сергей Александрович
  • Коробков Дмитрий Владиславович
  • Преображенский Евгений Борисович
RU2381607C1
УСТРОЙСТВО ДЛЯ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ ЭЛЕКТРОПОДВИЖНОГО СОСТАВА 2017
  • Кулинич Юрий Михайлович
  • Шухарев Сергей Анатольевич
RU2668346C1

Реферат патента 2013 года СПОСОБ УПРАВЛЕНИЯ УСТРОЙСТВОМ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ В ПИТАЮЩЕЙ СЕТИ

Использование: в области электротехники. Технический результат заключается в повышении качества электрической энергии за счет исключения в сетевом токе гармонических составляющих, генерируемых нелинейной нагрузкой без применения дополнительных силовых фильтрующих LC-цепей. Согласно способу измеряют мгновенные значения трехфазного тока сети, выделяют выбранные гармонические составляющие этого тока, производят пофазное сложение данных гармонических составляющих, формируют токи коррекции для каждой фазы сетевого тока, содержащие выделенные гармонические составляющие и имеющие фазовый сдвиг 180 электрических градусов, и, выдавая в каждую фазу соответствующие токи, добиваются компенсации гармонических составляющих сетевого тока. 1 ил.

Формула изобретения RU 2 498 475 C2

Способ управления устройством компенсации реактивной мощности в питающей сети, содержащего нелинейную нагрузку и подключенный параллельно к нелинейной нагрузке статический компенсатор на полностью управляемых ключах, заключающийся в том, что измеряют параметры гармонических составляющих тока нелинейной нагрузки - величину и фазу и формируют в токе статического компенсатора гармонические составляющие пропорционально и противофазно измеренным гармоническим составляющим тока нелинейной нагрузки, отличающийся тем, что измеряют мгновенные значения трехфазного тока сети, выделяют выбранные гармонические составляющие этого тока, производят пофазное сложение данных гармонических составляющих, формируют токи коррекции для каждой фазы сетевого тока, содержащие выделенные гармонические составляющие и имеющие фазовый сдвиг 180 электрических градусов, и, выдавая в каждую фазу соответствующие токи, добиваются компенсации гармонических составляющих сетевого тока.

Документы, цитированные в отчете о поиске Патент 2013 года RU2498475C2

СПОСОБ УПРАВЛЕНИЯ УСТРОЙСТВОМ КОМПЕНСАЦИИ РЕАКТИВНОЙ МОЩНОСТИ 2005
  • Мазуров Михаил Иванович
  • Николаев Алексей Васильевич
  • Дайновский Рафаил Анатольевич
  • Краснова Берта Павловна
RU2280934C1
СПОСОБ КОМПЕНСАЦИИ ВЫСШИХ ГАРМОНИК И КОРРЕКЦИИ КОЭФФИЦИЕНТА МОЩНОСТИ СЕТИ 2008
  • Абрамович Борис Николаевич
  • Полищук Вадим Васильевич
  • Сычев Юрий Анатольевич
RU2354025C1
СПОСОБ ПОВЫШЕНИЯ КАЧЕСТВА И ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ ЭЛЕКТРОЭНЕРГИИ (ВАРИАНТ 6) 2010
  • Устименко Игорь Владимирович
RU2435279C1
JP 11103527 A, 13.04.1999
US 7352597 B2, 01.04.2008.

RU 2 498 475 C2

Авторы

Харитонов Сергей Александрович

Коробков Дмитрий Владиславович

Машинский Вадим Викторович

Завертан Сергей Николаевич

Бородин Николай Иванович

Христолюбова Александра Ивановна

Бородин Дмитрий Николаевич

Даты

2013-11-10Публикация

2011-12-07Подача