Предлагаемое изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью.
Известен «Способ определения места и характера повреждения линии электропередачи с использованием ее моделей», который заключается в том, что выделяют напряжения и токи основных гармоник, подают напряжения основных гармоник на входы моделей, измеряют токи на указанных входах и сравнивают их с выделенными токами, подключают к каждой модели комплексную нагрузку в месте предполагаемого повреждения, устанавливают активные и реактивные проводимости комплексных нагрузок такими, чтобы токи основных гармоник на входах моделей и выделенных токов линии совпали, определяют углы комплексных нагрузок, выбирают нагрузку с нулевым углом и принимают, что место и характер повреждения соответствуют месту подключения указанной нагрузки и величинам ее активных проводимостей (Лямец Ю.Я., Антонов В.И., Ефремов В.А., Нудельман Г.С., Подшивалин Н.В. Патент РФ 2033622, МПК G01R 31/11, Н02Н 3/28, 20.04.1995).
Известен «Способ определения места повреждения на воздушных линиях электропередачи», взятый за прототип, который заключается в том, что по измеренным фазным токам и напряжениям в момент короткого замыкания и току нагрузки в предаварийном режиме при помощи телеграфных уравнений получают приближенное расстояние до места повреждения. Далее посредством итерационного процесса, меняя переходное сопротивление в месте повреждения, учитывая поперечные емкости линии, волновые процессы и критерий того, что мнимая часть расстояния до места повреждения стремится к нулю, уточняют расстояние до места повреждения (Висящев А.Н., Устинов А.А. Патент РФ 2426998, МПК G01R 31/08, 20.11.2009).
Недостатки обоих способов связаны с тем, что для определения места повреждения используются напряжения и токи, связанные с промышленной частотой 50 Гц. Рабочие частоты данного метода малы, что приводит к малой точности данного метода. Кроме того, основными характеристиками модели являются сопротивления линии электропередачи, и переходное сопротивление места повреждения. При этом величина переходного сопротивления места повреждения не известна, и она является источником погрешностей. Кроме того, измерительные трансформаторы промышленной частоты 50 Гц имеют большие угловые погрешности (угловые погрешности порядка 60° для трансформаторов тока нулевой последовательности типа ТЗЛМ и ТЗРЛ), что также является источником погрешности.
Задача изобретения заключается в повышении точности определения места повреждения линии электропередачи за счет того, что в качестве исходных сигналов в предлагаемом способе используют сигналы переходного процесса, которые возникает при однофазном замыкании на землю.
Технический результат достигается тем, что в способе определения дальности до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, согласно заявляемому изобретению, по суммарной емкости нулевой последовательности всех линий, подключенных к шинам, по значению мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, по погонному индуктивному сопротивлению нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, по скорости нарастания и по максимальной амплитуде тока нулевой последовательности на поврежденной линии после возникновения однофазного замыкания на землю - определяют расстояние от шин, питающих линию электропередачи, до места однофазного замыкания на землю.
Таким образом, для определения расстояния от шин, питающих линию электропередачи, до места однофазного замыкания на землю определяют суммарную емкость нулевой последовательности всех линий, подключенных к шинам, значение мгновенного напряжения на поврежденной фазе в момент возникновения однофазного замыкания на землю, погонное индуктивное сопротивление нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, скорость нарастания, максимальную амплитуду тока нулевой последовательности на поврежденной линии после возникновения однофазного замыкания на землю.
Сущность изобретения поясняется чертежами, где на фиг.1 изображена общая схема подстанции, на линии которой происходит ОЗЗ, на фиг.2 изображена упрощенная схема переходного процесса.
При повреждении линии электропередачи, скорость возникновения дугового высоковольтного разряда в месте повреждения весьма высока, обычно указывают величину времени возникновения τ<100 нс. Благодаря весьма крутому фронту изменения напряжения в месте повреждения, генерируются высокие частоты переходных процессов F<(1/τ)~10 МГц. Таким образом, частоты переходных процессов значительно больше промышленной частоты 50 Гц.
Это, во-первых, повышает точность определения места повреждения в предлагаемом способе. Во-вторых, большая разность частот переходных процессов F<10 МГц и промышленной частоты 50 Гц позволяет достаточно легко выделить сигналы переходных процессов на фоне промышленной частоты 50 Гц. В-третьих, крутой фронт изменения напряжения в месте повреждения приводит к генерации широкого непрерывного спектра частот переходного процесса, начиная с частот F~10 МГц и ниже.
При возникновении повреждения, однофазного замыкания на землю (ОЗЗ), происходит разряд емкости поврежденной фазы на землю, одновременно происходит заряд емкостей неповрежденных фаз.
Рассмотрим весь переходный процесс, начиная с момента непосредственно до повреждения.
Трехфазный источник питания 1 (фиг.1) подключен к шинам 2. От шин 2 отходят неповрежденные линии электропередачи, которые суммарно обозначены в виде 3 (фазы А), 4 (фазы В), 5 (фазы С). От этих же шин 2 отходит линия электропередачи, на которой произошло повреждение - ОЗЗ, провода которой обозначены в виде 6 (фазы А), 7 (фазы В), 8 (фазы С). Провода имеют емкость относительно земли: провода неповрежденной линии электропередачи имеют емкости 9 (фазы А), 10 (фазы В), 11 (фазы С); провода поврежденной линии электропередачи имеют емкости 12 (фазы А), 13 (фазы В), 14 (фазы С). Провода поврежденной линии электропередачи проходят через трансформатор тока 15 нулевой последовательности, который измеряет ток I0. В исходном состоянии (до повреждения, до ОЗЗ) напряжение на нейтрали источника питания 1 равно нулю (напряжение нулевой последовательности U0=0). При замыкании на землю одной фазы поврежденной линии электропередачи (например, фазы С) происходит разряд емкости 14 этой фазы, на нейтрали появляется напряжение Uс, которое было на поврежденной фазе С в момент повреждения.
Обычно суммарные емкости (9, 10, 11) неповрежденных линий больше емкостей (12, 13, 14) поврежденной линии. В таком случае упрощенную схему (фиг.2) переходного процесса можно представить в виде разряда суммарной емкости 16 нулевой последовательности (С0) всех линий, подключенных к шинам, через сопротивление 17 нулевой последовательности (Х0) поврежденной линии на отрезке от шин 2 до точки повреждения, до ОЗЗ. В исходном состоянии, до повреждения, емкость С0 заряжена до напряжения Uс, которое было на поврежденной фазе С в момент повреждения провода 8. При этом ток разряда I0 регистрирует трансформатор тока 15.
Сопротивление 17 нулевой последовательности (Х0) пропорционально длине Д поврежденной линии на отрезке от шин 2 до точки повреждения, до ОЗЗ: Х0=Д*Хпогонное, где Хпогонное - погонное сопротивление нулевой последовательности поврежденной линии.
Обычно основной вклад в сопротивление нулевой последовательности вносит индуктивное сопротивление L0 линии: Х0=L0.
L0=Д*Lпогонное, где Lпогонное - погонное индуктивное сопротивление нулевой последовательности поврежденной линии.
При приложении напряжения Uc к индуктивности L0 ток I0 линейно нарастает со временем:
dI0/dt=Uc/L0=Uc/(Д*Lпогонное), где dI0/dt - скорость нарастания тока нулевой последовательности I0. Поэтому, измерив величину скорости dI0/dt сразу после возникновения ОЗЗ, зная напряжение Uc в момент повреждения и параметр линии Lпогонное - можно определить дальность Д от шин до места повреждения:
Д=Uc/(dI0/dt*Lпогонное).
В общем случае, Хпогонпое состоит из активной и индуктивной составляющих, и закон изменения тока нулевой последовательности будет более сложный, но в любом случае, измерив скорость нарастания тока dIo/dt, можно определить дальность Д от шин до места повреждения.
Полный разряд суммарной емкости 16 нулевой последовательности (С0) на индуктивность L0 поврежденной линии с сопротивлением 17 приводит к перекачке энергии в энергию тока I0,max (максимальное значение тока нулевой последовательности):
I0, max2*L0=Uc 2*C0.
Поэтому замерив I0,max переходного процесса можно определить L0=Д*Lпогонное, и, соответственно, определить дальность до ОЗЗ:
Д=Uc 2*C0/(I0, max2*Lпогонное)
Таким образом, предлагаемый способ определения дальности до однофазного замыкания на землю в линиях электропередачи по току нулевой последовательности переходного процесса имеет следующие особенности:
1. Контролируется ток нулевой последовательности I0 каждой линии электропередачи, отходящей от шин.
2. Контролируется напряжение каждой фазы (А, В, С) на шинах.
3. По данным контрольным величинам, и по параметрам поврежденной линии - определяется дальность до ОЗЗ.
4. Ток I0 переходного процесса при ОЗЗ имеет весьма большую величину (сотни ампер), поэтому легко отличим от нормального режима работы линии (когда I0~0).
5. Длительность переходного процесса (длительность броска тока I0 при ОЗЗ) весьма мала: меньше миллисекунды. Поэтому для записи переходного процесса требуется высокая частота дискретизации (сотни тысяч измерений в секунду).
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ | 2012 |
|
RU2498331C1 |
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ | 2016 |
|
RU2637378C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ ФИДЕРА НА ЗЕМЛЮ В КАБЕЛЬНЫХ СЕТЯХ СРЕДНЕГО НАПРЯЖЕНИЯ | 2018 |
|
RU2695278C1 |
Способ определения места повреждения воздушных линий в распределительных сетях | 2016 |
|
RU2647536C1 |
Способ определения места однофазного замыкания на землю воздушных линий электропередачи в электрических сетях с изолированной нейтралью | 2022 |
|
RU2798941C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ | 2010 |
|
RU2446533C1 |
Способ селективного определения отходящей линии с однофазным замыканием на землю в распределительных сетях напряжением 6-35 кВ | 2015 |
|
RU2631121C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ НА ЛИНИЯХ ЭЛЕКТРОПЕРЕДАЧИ ПО СПЕКТРУ ПЕРЕХОДНОГО ПРОЦЕССА | 2012 |
|
RU2503965C2 |
СПОСОБ ДИСТАНЦИОННОГО ОПРЕДЕЛЕНИЯ МЕСТА ЗАМЫКАНИЯ ФАЗЫ НА ЗЕМЛЮ | 2019 |
|
RU2704394C1 |
Способ корреляционной защиты трехфазной сети с изолированной нейтралью от однофазных замыканий на землю | 2019 |
|
RU2711296C1 |
Изобретение относится к электротехнике и электроэнергетике и может быть использовано в устройствах защиты для определения дальности до места однофазного замыкания на землю (ОЗЗ) в трехфазных распределительных сетях среднего класса напряжений с изолированной, компенсированной или заземленной через резистор нейтралью. Сущность: измеряют максимальную амплитуду тока нулевой последовательности I0, max на поврежденной линии после возникновения однофазного замыкания на землю. Определяют расстояние до однофазного замыкания на землю по значению мгновенного напряжения Uc на поврежденной фазе в момент возникновения однофазного замыкания на землю, по суммарной емкости С0 нулевой последовательности всех линий, подключенных к шинам, по максимальной амплитуде тока нулевой последовательности I0, max на поврежденной линии после возникновения однофазного замыкания на землю и по погонному индуктивному сопротивлению Lпогонное нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, в соответствии с выражением Д=Uc2*C0/(I0, max2*Lпогонное). 2 ил.
Способ определения расстояния до однофазного замыкания на землю в линиях электропередачи путем одностороннего измерения напряжений и токов доаварийного и аварийного режимов, отличающийся тем, что осуществляют измерение максимальной амплитуды тока нулевой последовательности I0, max на поврежденной линии после возникновения однофазного замыкания на землю и определение расстояния по значению мгновенного напряжения Uc на поврежденной фазе в момент возникновения однофазного замыкания не землю, по суммарной емкости С0 нулевой последовательности всех линий, подключенных к шинам, по максимальной амплитуде тока нулевой последовательности I0, max на поврежденной линии после возникновения однофазного замыкания на землю и по погонному индуктивному сопротивлению Lпогонное нулевой последовательности линии электропередачи, на которой возникло однофазное замыкание на землю, в соответствии с выражением Д=Uc 2*C0/(I0, max2*Lпогонное).
US 4568872, 04.02.1986 | |||
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ СЕТИ НАПРЯЖЕНИЯ 6( 10 ) - 35 кВ С ИЗОЛИРОВАННОЙ ИЛИ КОМПЕНСИРОВАННОЙ НЕЙТРАЛЬЮ | 2006 |
|
RU2305292C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ПОВРЕЖДЕНИЯ ЭЛЕКТРИЧЕСКОЙ СЕТИ НАПРЯЖЕНИЯ 6( 10 ) - 35 кВ С ИЗОЛИРОВАННОЙ ИЛИ КОМПЕНСИРОВАННОЙ НЕЙТРАЛЬЮ | 2006 |
|
RU2305293C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ МЕСТА ОДНОФАЗНОГО ЗАМЫКАНИЯ НА ЗЕМЛЮ В СЕТИ С ИЗОЛИРОВАННОЙ НЕЙТРАЛЬЮ | 2010 |
|
RU2446533C1 |
JP 2004045118 A, 12.02.2004 | |||
JP 55066768 A, 20.05.1980 | |||
JP 7012878 A, 17.01.1995. |
Авторы
Даты
2013-11-27—Публикация
2012-05-28—Подача