Изобретение относится к приборостроению и может быть использовано при разработке полупроводниковых датчиков давления, выполненных по технологии МЭМС (микроэлектромеханические системы).
Известен преобразователь давления, который содержит мембрану из монокристаллического кремния, на которой сформированы 4 тензорезистора, которые включены в измерительный мост. Измерительный мост последовательно соединен с опорным резистором, и они подключены к источнику питания, управляемый вход которого подключен к дифференциальному усилителю. Вход этого усилителя соединен с выходом дополнительного моста, образованного последовательной цепочкой тензомоста с указанным резистором и делителем напряжения из двух дополнительных резисторов. В этом преобразователе тензорезисторы выполняют функции и измерителя давления, и измерителя температуры и нагревательного элемента. Последняя функция обеспечена регулировкой тока через измерительный мост такой, чтобы выходное напряжение дополнительного моста оставалось стабильным. При этом температура кристаллической мембраны также стабилизируется.
Такой преобразователь описан в журнале «Измерительная техника» №11 за 1982 г., стр.35. Недостатком преобразователя является невозможность обеспечения термостабилизации в широком диапазоне температур.
Этот недостаток устранен в преобразователе по патенту RU №2036445, который и принят за прототип. В этом преобразователе также измерительный мост включен в плечо дополнительного моста, вход которого соединен с выходом регулируемого источника питания. Отличие схемы от вышеописанной заключено в том, что кристаллическая мембрана не термостатируется, а напряжение питания измерительного моста регулируется так, что коэффициент термочувствительности коэффициента чувствительности (ТКЧ) по давлению уменьшается до 0. Это обеспечено положительной обратной связью с выхода дополнительного моста. При этом измерительный мост также несет информацию о температуре, кроме информации о давлении. Причем входное напряжение тензомоста слабо зависит от давления и сильно зависит от температуры. Это и используется для компенсации ухода 0.
Недостатком преобразователя-прототипа является необходимость определения ТКЧ каждого кристалла и настройка источника питания в соответствии с этим ТКЧ и температурным коэффициентом сопротивления (ТКС) тензорезисторов.
Предлагаемое изобретение и направлено на устранение этого недостатка.
Частично этот недостаток устранен в преобразователе на базе кристалла, в котором на мембране, кроме тензомоста, выполнен транзистор, последовательно соединенный с тензомостом. Включение этой схемы на выход стабилизатора напряжения обеспечивает стабильный ток через тензомост. За счет этого исключается влияние на коэффициент передачи температуры (ТКЧ→0). Однако при этом увеличивается погрешность от температуры ухода начального напряжения (уменьшили мультипликативную погрешность - увеличилась аддитивная и, наоборот, при смене источника напряжения на источник тока моста).
Целью предложенной схемы преобразователя давления является устранение температурной погрешности в преобразователе, выполненном на кристалле с тензомостом и стабилизатором тока.
Указанная цель достигается подключением к выходной диагонали измерительного тензомоста, кроме инструментального усилителя, который вычитает потенциалы выходной диагонали, также и сумматора этих потенциалов. Последний выполнен с помощью двух диодов, каждый из которых анодом соединен с соответствующим узлом выходной диагонали измерительного тензомоста, а катодами они подключены к резисторам сумматора так, что на выходе сумматора обеспечивается сумма потенциалов выходной диагонали моста. Кроме этого организован третий вход сумматора для начального смещения сумматора, и коэффициент передачи сумматора выполнен настраиваемым.
Компенсация температурного ухода «0» (начального смещения) обеспечивается вычитанием выходных напряжений инструментального усилителя и описанного сумматора, реализованным на операционном усилителе, входами подключенным к выходам инструментального усилителя и сумматора. Настройка коэффициента передачи сумматора производится из условия:
где
u1 - выходное напряжение инструментального усилителя,
Kp - коэффициент его передачи по давлению, а
Kt - коэффициент температурной зависимости u1.
u2 - выходное напряжение сумматора,
Для предложенной схемы характерна нижеследующая зависимость:
Причем
Из этих уравнений и следует формула для вычисления давления. Коэффициенты
На рисунке 1 обозначено:
1 - тензометрированный кристалл с транзистором, который обеспечивает существенное уменьшение ТКЧ,
2 - инструментальный усилитель,
3 - сумматор потенциалов φ1 и φ2,
4 - операционный усилитель.
Преобразователь реализует функцию уменьшения температурной погрешности ухода «0» за счет применения сумматора потенциалов φ1 и φ2. При воздействии на кристалл давления, потенциал φ1 уменьшается, а φ2 - увеличивается. Инструментальный усилитель вычисляет разность этих потенциалов и усиливает ее. Поэтому этот канал является чувствительным к давлению. При воздействии температуры все резисторы тензомоста увеличиваются и поэтому потенциалы φ1 и φ2 изменяются почти одинаково. Поэтому этот канал от температуры зависит слабо. Его температурная зависимость определяется только начальным смещением и входным напряжением моста, которое изменяется с температурой так, что ток через мост остается постоянным. Однако будучи усиленным инструментальным усилителем, разность потенциалов φ1 и φ2 становится существенной.
Канал сумматора, наоборот, при воздействии на кристалл давлением, сумма потенциалов φ1 и φ2 не изменяется или изменяется очень слабо. При воздействии же температуры сумма потенциалов φ1 и φ2 удваивается и является существенно зависимой от температуры, поскольку при этом изменяется напряжение моста.
Можно считать, что этот канал несет информацию о температуре тензомоста, его сигнал и компенсирует уход «0» на выходе инструментального усилителя. Так, для ЧЭД5, выпускаемых. Технологическим центром МИЭТ (Зеленоград), соотношение
Если сравнивать предложенную схему со схемами коррекции, основанными на измерении температуры кристалла с помощью размещаемых на кристалле тензорезисторов (как это делается в НИИФИ г.Пенза), то можно отметить следующее: терморезистор несет информацию о температуре мембраны, однако тензорезисторы имеют температуру, отличную от температуры терморезистора. Тогда как в предложенной схеме измеряется средняя температура всех четырех тензорезисторов с помощью суммирования потенциалов φ1 и φ2. В схемах НИИФИ достигается термокоррекция в узком диапазоне температур, в предложенной схеме - в более широком диапазоне температур. Причем термокоррекция предложенная не требует применения контроллеров, а реализуется на операционных усилителях (смотри, например, статью Е. Слива «Коррекция по температуре измерительных преобразователей физических величин на базе микроконтроллера MSP 430 F149 фирмы Texas Instrument», в Интернете catalog.qaw.ru).
Влияние сумматора на потенциалы моста в данной схеме исключено за счет применения диодов и существенно меньших сопротивлений моста, чем входные сопротивления сумматора. Следует также отметить, что предложенная схема термокоррекции выполнит свою функцию при ее применении для коррекции температуры преобразователей полупроводниковых, у которых на мембране размещен только тензомост без транзистора. При этом необходимо только тензомост питать стабильным током, подключая его к стабилизатору тока. Тогда его ТКЧ стремится к 0, а увеличение смещения «0» компенсирует предложенная схема на основе сумматора потенциалов средних точек тензомоста.
Тем самым показано ее широкое применение, а новизна заключена в измерении изменения суммы потенциалов средних точек тензорезисторного моста, реализованное сумматором и двумя диодами.
название | год | авторы | номер документа |
---|---|---|---|
Тензопреобразователь давления мостового типа | 2019 |
|
RU2731033C1 |
СПОСОБ ПРЕОБРАЗОВАНИЯ СИГНАЛОВ С ДИФФЕРЕНЦИАЛЬНЫХ ИНДУКТИВНЫХ ИЛИ ЕМКОСТНЫХ ЧУВСТВИТЕЛЬНЫХ ЭЛЕМЕНТОВ | 2012 |
|
RU2514158C1 |
ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ | 1988 |
|
RU2036445C1 |
ДИФФЕРЕНЦИАЛЬНЫЙ ИНДУКТИВНЫЙ ИЗМЕРИТЕЛЬ ПЕРЕМЕЩЕНИЯ | 2012 |
|
RU2502949C1 |
ИЗМЕРИТЕЛЬНЫЙ МОСТ | 2000 |
|
RU2171473C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПЛОТНОСТИ И УРОВНЯ ЖИДКОСТИ В РЕЗЕРВУАРАХ (ПЛОТНОМЕР-УРОВНЕМЕР) | 2006 |
|
RU2341778C2 |
ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ В ЭЛЕКТРИЧЕСКИЙ СИГНАЛ | 1995 |
|
RU2082129C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ДАВЛЕНИЯ | 1999 |
|
RU2165602C2 |
ТЕНЗОМЕТРИЧЕСКИЙ ДАТЧИК СИЛЫ | 2003 |
|
RU2249189C1 |
Тензометрическое устройство | 1990 |
|
SU1758414A1 |
Изобретение относится к приборостроению и может быть использовано при разработке полупроводниковых датчиков давления, выполненных по технологии МЭМС (микроэлектромеханические системы). Преобразователь давления содержит кремниевую мембрану с тензоизмерительным мостом, последовательно соединенным с транзистором, подключенными к источнику постоянного напряжения. Выходная диагональ тензомоста соединена с входом инструментального усилителя, выход которого подключен к первому входу усилителя коррекции температурной погрешности. Ко второму входу усилителя коррекции подключен сумматор, первые два входа которого соединены через резистор и диод со средними точками измерительного тензомоста. Третий вход через резистор подключен к источнику смещения напряжения сумматора. Техническим результатом является устранение температурной погрешности в преобразователе. 1 ил.
Преобразователь давления, содержащий кремниевую мембрану с тензоизмерительным мостом, последовательно соединенным с транзистором, подключенными к источнику постоянного напряжения, причем выходная диагональ тензомоста соединена с входом инструментального усилителя, выход которого подключен к первому входу усилителя коррекции температурной погрешности, отличающийся тем, что ко второму входу усилителя коррекции подключен сумматор, первые два входа которого соединены через резистор и диод со средними точками измерительного тензомоста, а третий вход через резистор - с источником смещения напряжения сумматора.
ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ | 1988 |
|
RU2036445C1 |
ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ И ТЕМПЕРАТУРЫ | 1995 |
|
RU2088942C1 |
ПОЛУПРОВОДНИКОВЫЙ ПРЕОБРАЗОВАТЕЛЬ ДАВЛЕНИЯ СО СХЕМОЙ ТЕРМОКОМПЕНСАЦИИ | 1992 |
|
RU2084846C1 |
ПОЛУПРОВОДНИКОВЫЙ ДАТЧИК ДАВЛЕНИЯ | 1995 |
|
RU2086940C1 |
Авторы
Даты
2013-12-27—Публикация
2012-09-21—Подача