СКВАЖИННЫЙ ГЕНЕРАТОР НЕЙТРОНОВ Российский патент 2014 года по МПК G21G4/02 

Описание патента на изобретение RU2504853C1

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к портативным нейтронным генераторам с запаянными нейтронными трубками, и может быть использовано в низковольтной ускорительной технике, геофизическом приборостроении, в частности, при разработке импульсных генераторов нейтронов для исследования геофизических и промысловых скважин методом импульсного нейтронного каротажа.

Скважинные генераторы нейтронов отличаются относительно высокой нестабильностью создаваемого нейтронного потока. Измерение импульсного нейтронного потока быстрых нейтронов при каждом срабатывании генератора актуально для генераторов нейтронов с вакуумной нейтронной трубкой, создающих относительно мощный нейтронный поток для единичного срабатывания генератора нейтронов ["Импульсные нейтронные генераторы на вакуумных нейтронных трубках, Бессарабский Ю.Г., Битулев А.А. и др., Сборник материалов Международной научно-практической конференции "портативные нейтронные генераторы и технологии на их основе", 18-22 октября 2004 г, Москва, ВНИИА]. Измерения импульсного нейтронного выхода в процессе каротажа необходимы для нормировки результатов измерения параметров вызванных полей излучений и для контроля технического состояния генератора нейтронов.

Известны устройства для измерения импульсного нейтронного выхода генератора нейтронов при измерениях в лабораторных условиях (Блок детектирования быстрых нейтронов БДЕН-15П АБЛК.418257.406, техническое описание и инструкция по эксплуатации, ЗАО "СНИИП-Плюс", 2003 г.), содержащие полупроводниковый детектор заряженных частиц окруженный алюминиевой фольгой и полиэтиленовой оболочкой -конвертор для преобразования потока нейтронов в протоны отдачи регистрируемые детектором, зарядочувствительный усилитель, усилитель формирователь и дискриминатор. Детекторы импульсного нейтронного выхода этих устройств имеют относительно большой размер, измерения выполняются в специальной геометрии, детекторы имеют относительно низкую термостойкость, что не позволяет осуществлять мониторирование импульсного нейтронного выхода скважинного генератора нейтронов в процессе каротажа, когда габариты монитора и генератора нейтронов ограничены диаметром скважинного прибора, устройство должно иметь относительно высокую термостойкость (до 175 С) и имеется мешающее влияние нейтронов, рассеянных из породы и скважины.

Ниже приведены устройства для каротажа скважин со встроенным в скважинную аппаратуру или непосредственно в нейтронную трубку чувствительным элементом монитора, позволяющие измерять поток быстрых нейтронов скважинного генератора нейтронов.

Известна скважинная геофизическая аппаратура, включающая генератор нейтронов и монитор быстрых нейтронов - "Well logging tool with an accelerator neutron source", US Patent №4760252, МПК G01V 5/10, Jul. 26 1988, содержащий чувствительный элемент детектора монитора из органического сцинтиллятора, соединенный через фотоумножитель к амплитудному дискриминатору. Детектор регистрирует счет электрических импульсов, вызванных в чувствительном элементе протонами отдачи. Регистрируются электрические импульсы в заданном энергетическом окне, соответствующем быстрым нейтронам источника нейтронов.

Недостатком устройства является счетный режим регистрации быстрых нейтронов, не позволяющий измерять нейтронный поток, создаваемый отдельным импульсом быстрых нейтронов относительно короткой длительности (длительностью несколько мкс). В этом случае точность измерения импульсного выхода нейтронов генератора ограничена из-за наложения электрических импульсов в детекторе, возникающих при высокой интенсивности нейтронов излучаемых в импульсе, как это имеет место в генераторе с вакуумной нейтронной трубкой. Недостатком является также необходимость температурной стабилизации энергетической шкалы детектора, работающего в скважинах при повышенных рабочих температурах, что усложняет аппаратуру и снижает точность измерения потока быстрых нейтронов. Еще одним недостатком является относительно большой размер детектора монитора. Оптимальный размер сцинтиллятора для мониторирования 14 МэВ нейтронов, обеспечивающий допустимое соотношение вкладов в отклик детектора информативных протонов отдачи и мешающего гамма излучения составляет 1-2 см, что не позволяет применять такой детектор в малогабаритной скважинной аппаратуре.

Известна импульсная нейтронная трубка (прототип), содержащая вакуумно-герметичную оболочку, внутри которой расположены ионный источник, ионно-оптическая система, газопоглотитель и мишень, детектор альфа-частиц, чувствительный элемент которого выполнен на основе кристалла синтетического алмаза, детектор альфа-частиц размещен внутри нейтронной трубки напротив мишени в непосредственной близости от нее (Патент Российской Федерации №2198441, МПК: G21G 4/02, 2003 г.). Импульсный выход нейтронной трубки в прототипе определяют о счету альфа частиц сопутствующих возникновению быстрых нейтронов.

К недостаткам прототипа следует отнести высокую погрешность измерения импульсного нейтронного выхода скважинного генератора нейтронов, обусловленную существенным влиянием импульсных электромагнитных помех и сопутствующего рентгеновского излучения на детектор альфа-частиц, находящийся внутри нейтронной трубки, которые невозможно исключить экранировкой детектора, из-за малых длин пробега альфа-частиц в веществе.

Техническим результатом настоящего изобретения является исключение погрешности измерения импульсного нейтронного выхода скважинного генератора нейтронов, обусловленной импульсными электромагнитными помехами и влиянием сопутствующего рентгеновского излучения.

Технический результат достигается тем, что скважинный генератор нейтронов, содержащий импульсную нейтронную трубку и детектор, чувствительный элемент которого выполнен из кристалла алмаза, в качестве детектора используется детектор быстрых нейтронов, чувствительный элемент детектора быстрых нейтронов закреплен на внешней стороне герметичной оболочки блока импульсной нейтронной трубки в непосредственной близости от мишени импульсной нейтронной трубки, выходы чувствительного элемента подсоединены через двухпроводную линию к двум резисторам нагрузки, резисторы нагрузки соединены соответственно с источниками положительного и отрицательного напряжения смещения и с входами усилителя-преобразователя разностного сигнала.

Сущность изобретения поясняется чертежом, на котором представлена схема конструкции скважинного генератора нейтронов с детектором быстрых нейтронов, где: 1 - блок нейтронной трубки; 2 - импульсная нейтронная трубка; 3 - мишень импульсной нейтронной трубки, 4 - алмазный чувствительный элемент; 5 - двухпроводная линия; 6 и 7 - резисторы нагрузки; 8 - усилитель-преобразователь разностного сигнала; 9 - детектор быстрых нейтронов, состоящий из алмазного чувствительного элемента 4, двухпроводной линии 5, резисторов нагрузки 6 и 7, усилителя-преобразователя разностного сигнала 8. Uсм - напряжение смещения.

Устройство содержит алмазный чувствительный элемент 4, размещенный снаружи корпуса блока нейтронной трубки 1 на расстоянии менее 3 см от мишени нейтронной трубки 3. Двухпроводная линия 5 соединяет алмазный чувствительный элемент 4 с резисторами нагрузки 6 и 7 и с входами усилителя-преобразователя разностного сигнала 8.

Малый размер алмазного чувствительного элемента, например 3*3*0.3 мм, позволяет разместить его на минимальном расстоянии от мишени нейтронной трубки, а применение термостойкого материала алмазного чувствительного элемента 4, позволяет использовать его при повышенных до 200°С рабочих температурах без температурной стабилизации.

Устройство работает следующим образом. При работе генератора нейтронов в мишени 3 импульсной нейтронной трубки 2 возникает импульс быстрых нейтронов. Быстрые нейтроны, частично рассеиваясь, проходят через конструкционные элементы блока нейтронной трубки 1 и попадают в алмазный чувствительный элемент 4.

Быстрые нейтроны, например 14 МэВ нейтроны возникающие в вакуумной нейтронной трубке с тритиевой мишенью, взаимодействуют с алмазным чувствительным элементом 4. В нем проходят ядерные реакции, в том числе пороговые реакции неупругого рассеяния нейтронов, одна из которых:

n+12C→9Be+α, (порог реакции 5.7 МэВ)

В результате взаимодействия импульсного потока быстрых нейтронов с алмазным чувствительным элементом 4 выделяется энергия, приводящая к образованию электронно-дырочных пар. Под воздействием напряжения смещения Uсм, подаваемого на алмазный чувствительный элемент 4 через двухпроводную линию 5 и резисторы нагрузки 6 и 7 от источников напряжения смещения Нем, в алмазном чувствительном элементе 4 возникает импульс тока длительностью сравнимой с длительностью импульса быстрых нейтронов. Этот ток создает на резисторах нагрузки 6 и 7 разнополярный электрический сигнал, пропорциональный импульсному нейтронному потоку, этот электрический сигнал поступает на вход усилителя-преобразователя разностного сигнала 8 с выхода которого разностный сигнал передается в схему регистратора. При возникновении помехи в алмазном чувствительном элементе 4 и его сигнальных цепях, обусловленной импульсными электромагнитными полями генератора нейтронов, сигнал на входах усилителя-преобразователя разностного сигнала 8 будет иметь одинаковую полярность. На выходе усилителя-преобразователя разностного сигнала 8 этот сигнал будет взаимно скомпенсирован. Таким образом, на выходе детектора быстрых нейтронов 9 сигнал от помехи будет подавлен, а сигнал пропорциональный потоку быстрых нейтронов удвоится, что обеспечит точное измерение интенсивности каждого нейтронного импульса.

Преобладающий вклад в величину заряда, возникающего в алмазном чувствительном элементе 4 под действием импульса быстрых нейтронов, а значит и в выходной сигнал детектора, вносят быстрые нейтроны, распространяющиеся внутри блока трубки 1 от мишени импульсной нейтронной трубки 3 к алмазному чувствительному элементу 4. Вклад в выходной сигнал детектора быстрых нейтронов от нейтронов рассеянных из скважины и из горных пород мал, ввиду того, что при многократном рассеянии в окружающей среде, нейтроны снижают энергию ниже пороговой, а их количество составляет малую долю от общего числа быстрых нейтронов, попавших в алмазный чувствительный элемент 4 при срабатывании нейтронной трубки 2. Таким образом, свойства среды, окружающей скважинный прибор, практически не влияют на выходной сигнал детектора быстрых нейтронов 9, что обеспечивает точность мониторирования импульсного выхода нейтронного генератора при меняющихся скважинных и пластовых условиях, которые имеют место при проведении каротажа скважин.

При срабатывании нейтронной трубки 2 корпус блока трубки 1 служит экраном импульсных электромагнитных помех для алмазного чувствительного элемента 4, расположенного снаружи корпуса. Размещение алмазного чувствительного элемента 4 снаружи корпуса блока трубки 1 снижает вклад в выходной сигнал детектора быстрых нейтронов 9 мешающего сопутствующего рентгеновского излучения, ослабляемого конструкционными материалами и относительно большим расстоянием от источников возникновения рентгеновского излучения внутри импульсной нейтронной трубки 2.

Миниатюрность алмазного чувствительного элемента 4 и его расположение вне блока нейтронной трубки 1, позволяют применять:

- дополнительные экраны электромагнитных помех, например, в виде тонкослойного заземленного металлического экрана для алмазного чувствительного элемента 4;

- дополнительные свинцовые экраны алмазного чувствительного элемента 4 для исключения влияния рентгеновского импульса с энергией <130 кэВ, сопутствующего нейтронному импульсу.

Похожие патенты RU2504853C1

название год авторы номер документа
ИМПУЛЬСНАЯ НЕЙТРОННАЯ ТРУБКА 2000
  • Плешакова Р.П.
RU2198441C2
СПОСОБ ТЕСТИРОВАНИЯ АППАРАТУРЫ РАДИОАКТИВНОГО КАРОТАЖА И УСТАНОВКА ДЛЯ ТЕСТИРОВАНИЯ АППАРАТУРЫ РАДИОАКТИВНОГО КАРОТАЖА 2008
  • Ахметшин Альфат Мидхатович
  • Биктимиров Альберт Альтафович
  • Валеев Галим Закиевич
  • Коровин Валерий Михайлович
  • Николаев Николай Александрович
  • Шилов Александр Александрович
RU2386986C1
СПОСОБ НЕЙТРОННОГО ГАММА-КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Федорин Михаил Альбертович
  • Титов Борис Григорьевич
RU2397513C1
СПОСОБ ОПРЕДЕЛЕНИЯ ТЕКУЩЕЙ НЕФТЕ- И ГАЗОНАСЫЩЕННОСТИ КОЛЛЕКТОРОВ В ОБСАЖЕННЫХ СКВАЖИНАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Урманов Э.Г.
  • Шкадин М.В.
RU2232409C1
СПОСОБ НЕЙТРОННОГО АКТИВАЦИОННОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Кучурин Е.С.
RU2073895C1
ГЕНЕРАТОР ИЗЛУЧЕНИЯ И КОНФИГУРАЦИЯ ИСТОЧНИКА ПИТАНИЯ ДЛЯ СКВАЖИННЫХ КАРОТАЖНЫХ ПРИБОРОВ 2008
  • Роско Брэдли Аллен
RU2481600C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПОРИСТОСТИ ПЛАСТОВ НА ОСНОВЕ РЕГИСТРАЦИИ НАДТЕПЛОВЫХ НЕЙТРОНОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2011
  • Киргизов Дмитрий Иванович
  • Баженов Владимир Валентинович
  • Лифантьев Виктор Алексеевич
  • Воронков Лев Николаевич
  • Мухамадиев Рамиль Сафиевич
RU2462736C1
АППАРАТУРА ДЛЯ КАРОТАЖА СКВАЖИН 1973
  • Э. Г. Урманов О. А. Терегулов Трест Татнсфтегеофизика
SU407258A1
СПОСОБ ЯДЕРНОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Хаматдинов Р.Т.
  • Черменский В.Г.
  • Велижанин В.А.
  • Саранцев С.Н.
  • Кузнецов А.В.
  • Осетров О.И.
  • Боголюбов Е.П.
  • Хасаев Т.О.
RU2256200C1
Способ мониторирования генератора быстрых нейтронов и устройство для его осуществления 1989
  • Черменский Владимир Германович
  • Гельд Владимир Давыдович
  • Саранцев Сергей Николаевич
SU1698868A1

Реферат патента 2014 года СКВАЖИННЫЙ ГЕНЕРАТОР НЕЙТРОНОВ

Изобретение относится к устройствам для генерации импульсных потоков быстрых нейтронов, в частности к портативным нейтронным генераторам с запаянными нейтронными трубками, и может быть использовано в низковольтной ускорительной технике, геофизическом приборостроении, в частности, при разработке импульсных генераторов нейтронов для исследования нефтегазовых и урановых скважин методом импульсного нейтронного каротажа. Заявленный скважинный генератор нейтронов содержит импульсную нейтронную трубку и детектор, чувствительный элемент которого выполнен из кристалла алмаза, в качестве детектора используется детектор быстрых нейтронов, чувствительный элемент детектора быстрых нейтронов закреплен на внешней стороне герметичной оболочки блока импульсной нейтронной трубки в непосредственной близости от мишени импульсной нейтронной трубки. При этом выходы чувствительного элемента подсоединены через двухпроводную линию к двум резисторам нагрузки, резисторы нагрузки соединены соответственно с источниками положительного и отрицательного напряжения смещения и с входами усилителя-преобразователя разностного сигнала. Техническим результатом является исключение погрешности измерения импульсного нейтронного выхода скважинного генератора нейтронов, обусловленной импульсными электромагнитными помехами и влиянием сопутствующего рентгеновского излучения. 1 ил.

Формула изобретения RU 2 504 853 C1

Скважинный генератор нейтронов, содержащий импульсную нейтронную трубку и детектор, чувствительный элемент которого выполнен из кристалла алмаза, отличающийся тем, что в качестве детектора используется детектор быстрых нейтронов, чувствительный элемент детектора быстрых нейтронов закреплен на внешней стороне герметичной оболочки блока импульсной нейтронной трубки в непосредственной близости от мишени импульсной нейтронной трубки, выходы чувствительного элемента подсоединены через двухпроводную линию к двум резисторам нагрузки, резисторы нагрузки соединены соответственно с источниками положительного и отрицательного напряжения смещения и с входами усилителя-преобразователя разностного сигнала.

Документы, цитированные в отчете о поиске Патент 2014 года RU2504853C1

ИМПУЛЬСНАЯ НЕЙТРОННАЯ ТРУБКА 2000
  • Плешакова Р.П.
RU2198441C2
Ручная косилка 1926
  • Алексеев Н.И.
SU8080A1
US 20090057545 A1, 05.03.2009
US 20090162278 A1, 25.06.2009.

RU 2 504 853 C1

Авторы

Амурский Андрей Геннадьевич

Колюбин Владимир Александрович

Осипов Игорь Николаевич

Хусаинов Амир Мухитдинович

Даты

2014-01-20Публикация

2012-08-22Подача