МИКРОПОЛОСКОВЫЙ ШИРОКОПОЛОСНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР Российский патент 2014 года по МПК H01P1/203 

Описание патента на изобретение RU2504870C1

Изобретение относится к технике сверхвысоких частот и предназначено для частотной селекции сигналов.

Известен микрополосковый полосно-пропускающий фильтр [Патент RU №2182738, МКИ7 Н01Р 1/203, 1/205, бюл. №14 от 20.05.2002], содержащий диэлектрическую подложку, одна сторона которой металлизирована и выполняет функцию заземляемого основания, а на вторую нанесены прямолинейные полосковые проводники. В таком фильтре полосковые проводники вместе с диэлектрической подложкой и заземляемым экраном образуют регулярные четвертьволновые микрополосковые резонаторы, электромагнитно связанные между собой.

Недостатком такой конструкции фильтра является то, что он имеет полосу заграждения не более октавы, а возможности расширения его полосы пропускания ограничиваются тем обстоятельством, что емкостное и индуктивное взаимодействие резонаторов вычитаются друг из друга. Это не позволяет достичь достаточно большой величины полного коэффициента связи, необходимого для реализации широкой полосы пропускания фильтра.

Наиболее близким аналогом является гребенчатый полосно-пропускающий микрополосковый фильтр [Патент RU №2148286, МКИ7 Н01Р 1/205, 1/203, бюл. №12 от 27.04.2000 (прототип)], содержащий диэлектрическую подложку, одна сторона которой металлизирована и выполняет функцию заземляемого основания, а на вторую нанесены короткозамкнутые полосковые проводники, связанные между собой электромагнитно и кондуктивно. Проводники резонаторов выполнены прямолинейными, кроме того, между полосковыми проводниками, являющимися резонаторами, нанесены дополнительные короткозамкнутые полосковые проводники, боковые стороны которых соединены с соседствующими резонаторами. Длина дополнительных полосковых проводников выполнена изменяемой.

Недостатками гребенчатого полосно-пропускающего микрополоскового фильтра являются узкая высокочастотная полоса заграждения и сравнительно большие размеры.

Техническим результатом изобретения является расширение высокочастотной полосы заграждения широкополосного полосно-пропускающего микрополоскового фильтра и уменьшение его размеров.

Указанный технический результат достигается тем, что в заявляемом фильтре, содержащем диэлектрическую подложку, на одну сторону которой нанесено заземленное основание, а на вторую сторону параллельно друг другу нанесены прямолинейные полосковые проводники резонаторов, связанные электромагнитно и кондуктивно, и дополнительные полосковые проводники, боковые стороны которых соединены с соседствующими резонаторами, новым является то, что только проводники наружных резонаторов одним концом короткозамкнуты, а дополнительные полосковые проводники не короткозамкнуты. Иначе говоря, проводники внутренних резонаторов одним концом соединены между собой и короткозамкнутыми проводниками внешних резонаторов с помощью дополнительных проводников.

Отличие заявляемого устройства от наиболее близкого аналога заключается в том, что только проводники наружных резонаторов одним концом короткозамкнуты, а дополнительные полосковые проводники, боковые стороны которых соединены с соседствующими резонаторами, не короткозамкнуты.

Таким образом, перечисленные выше отличительные от прототипа признаки позволяют сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Сущность изобретения поясняется с помощью графических материалов.

На фиг.1а изображена топология проводников пятирезонаторного фильтра прототипа, а на фиг.1б - топология проводников заявляемого микрополоскового фильтра пятого порядка.

На фиг.2 изображены рассчитанные амплитудно-частотные характеристики заявляемого фильтра (сплошная линия) и фильтра прототипа (штриховая линия).

На фиг.3 изображены амплитудно-частотные характеристики фильтра пятого порядка, измеренные на экспериментальном макете.

Заявляемый микрополосковый широкополосный полосно-пропускающий фильтр (фиг.1б) содержит диэлектрическую подложку 1, одна сторона которой полностью металлизирована и выполняет функцию заземляемого основания, а на вторую сторону нанесены параллельные прямолинейные полосковые проводники 2 и 3, причем внешние проводники 3 короткозамкнуты с одной стороны на экран, а внутренние 2 кондуктивно соединены с одного конца между собой и соединены с внешними короткозамкнутыми проводниками с помощью дополнительных проводников 4. Внешние проводники 3 также кондуктивно подключены к входной и выходной линиям передачи.

Фильтр работает следующим образом. Входная и выходная линии передачи подключаются к проводникам, как показано на фиг.1б, причем расстояние от заземленных концов проводников до точек подключения внешних линий передачи определяется заданным уровнем отражений в полосе пропускания фильтра. Сигналы, частоты которых попадают в полосу пропускания, проходят на выход фильтра с минимальными потерями, в то время как на частотах вне полосы пропускания происходит отражение сигналов от входа устройства.

Благодаря наличию дополнительного проводника все параллельные проводники, образующие резонаторы, связаны между собой не только электромагнитно, но и кондуктивно. Величину коэффициента связи можно изменять, варьируя как величины зазоров между резонаторами S, так и расстояние от дополнительного проводника до экрана l1. Как известно, ширина полосы пропускания фильтра определяется, при прочих равных условиях, величиной коэффициента связи между резонаторами. Меняя расстояние l1 от дополнительного проводника до экрана, можно в широких пределах менять величину коэффициента связи между резонаторами, не меняя при этом расстояния между ними. Благодаря этому можно получить относительную ширину полосы пропускания до 120% и более, с величинами зазоров достаточными, чтобы обеспечить электрическую прочность фильтра, требуемую для работы с уровнями мощности в десятки ватт. Ширина дополнительного проводника может быть выбрана достаточно малой, что приводит к увеличению его погонной индуктивности. Это существенно уменьшает длину полосковых проводников резонаторов заявляемого фильтра по сравнению с прототипом при одинаковой центральной частоте полосы пропускания, а также расширяет его высокочастотную полосу заграждения.

На фиг.2 приведены расчетные частотные зависимости вносимых потерь для заявляемого фильтра (сплошная линия) и фильтра прототипа (пунктирная линия). Оба фильтра имеют центральную частоту f0=2 ГГц и относительную ширину полосы пропускания Δf/f0=70% по уровню - 3 дБ, КСВ в полосе пропускания фильтра не хуже 1,5. Расстояние между полосковыми проводниками внешних резонаторов было одинаковым для обоих фильтров, а ширина полосковых проводников всех резонаторов была одинаковой и равна 1 мм. В качестве материала подложек был выбран поликор с относительной диэлектрической проницаемостью ε=9.8; толщина подложек hd=1 мм. В расчетной модели заявляемого фильтра расстояние от дополнительного проводника до экрана l1=3.5 мм, а зазоры между проводниками резонаторов: S1=0.5 мм, S2=2.5 мм. При этом размеры микрополосковой структуры в заявляемом фильтре составили 11×16 мм, в то время как размеры фильтра прототипа составили 11×21 мм2, т.е. заявленный фильтр имеет существенно меньшие размеры при прочих равных условиях, что подтверждает заявленный технический результат.

Из графиков видно, что в области полосы пропускания амплитудно-частотные характеристики почти идентичны, однако первый паразитный высокочастотный резонанс у фильтра прототипа располагается на частоте 3.66 ГГц, а у заявляемого фильтра - на частоте 5 ГГц, т.е. практически в 1.4 раза дальше. Это отношение можно еще больше увеличить, уменьшая ширину дополнительного проводника wp.

На фиг.3 приведены измеренные зависимости прямых потерь (точки) и потерь на отражение (штриховая линия) макета полосно-пропускающего фильтра пятого порядка на основе заявляемой конструкции. Его конструктивные параметры были следующими. Подложка выполнена из керамики ТБНС (ε=80) толщиной hd=1 мм. При этом остальные параметры конструкции в миллиметрах были следующими: lr=13.5, l1=3.5, δ1=1.2, δ2=2.5, S1=0.6, S2=3.3, w1=w2=w3=0.4, wp=0.1, т.е. размеры микрополосковой структуры фильтра составили всего 13.5×9.3 мм2. Фильтр имеет относительную ширину полосы пропускания, измеренную по уровню - 1дБ от уровня минимальных потерь, Δf/f0=62%, и центральную частоту полосы пропускания f0=945 МГц.

Таким образом, заявляемая конструкция позволяет реализовывать на ее основе миниатюрные широкополосные полосно-пропускающие фильтры с увеличенной высокочастотной полосой заграждения.

Похожие патенты RU2504870C1

название год авторы номер документа
МИКРОПОЛОСКОВЫЙ ШИРОКОПОЛОСНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2018
  • Беляев Борис Афанасьевич
  • Сержантов Алексей Михайлович
  • Лексиков Александр Александрович
  • Савишников Максим Олегович
  • Бальва Ярослав Федорович
  • Лексиков Андрей Александрович
RU2675206C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2008
  • Беляев Борис Афанасьевич
  • Лексиков Александр Александрович
  • Тюрнев Владимир Веньяминович
RU2362241C1
Широкополосный полосковый фильтр 2016
  • Беляев Борис Афанасьевич
  • Сержантов Алексей Михайлович
  • Лексиков Александр Александрович
  • Угрюмов Алексей Витальевич
  • Бальва Ярослав Федорович
  • Лексиков Андрей Александрович
RU2626224C1
Микрополосковый широкополосный фильтр 2016
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2644976C1
МИКРОПОЛОСКОВЫЙ ГРЕБЕНЧАТЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 1998
  • Беляев Б.А.
  • Лексиков А.А.
  • Шепов В.Н.
  • Шихов Ю.Г.
RU2148286C1
ПОЛОСКОВЫЙ ФИЛЬТР ГАРМОНИК 2015
  • Беляев Борис Афанасьевич
  • Лексиков Александр Александрович
  • Сержантов Алексей Михайлович
RU2590313C1
ПОЛОСКОВЫЙ ФИЛЬТР С ШИРОКОЙ ПОЛОСОЙ ЗАГРАЖДЕНИЯ 2012
  • Беляев Борис Афанасьевич
  • Лексиков Александр Александрович
  • Сержантов Алексей Михайлович
  • Бальва Ярослав Федорович
  • Тюрнев Владимир Вениаминович
RU2513720C1
МИКРОПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2011
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2475900C1
Микрополосковый полосно-пропускающий фильтр 2022
  • Беляев Борис Афанасьевич
  • Сержантов Алексей Михайлович
  • Ходенков Сергей Александрович
RU2797166C1
МИКРОПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2020
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2748864C1

Иллюстрации к изобретению RU 2 504 870 C1

Реферат патента 2014 года МИКРОПОЛОСКОВЫЙ ШИРОКОПОЛОСНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР

Изобретение относятся к технике сверхвысоких частот и предназначено для частотной селекции сигналов. Технический результат заключается в расширении высокочастотной полосы заграждения полосно-пропускающего микрополоскового фильтра и уменьшении его размеров. Микрополосковый фильтр содержит диэлектрическую подложку, на одну сторону которой нанесено заземленное основание, а на вторую сторону параллельно друг другу нанесены прямолинейные полосковые проводники резонаторов, связанные электромагнитно и кондуктивно, и дополнительные полосковые проводники, боковые стороны которых соединены с соседствующими резонаторами, причем только проводники наружных резонаторов одним концом короткозамкнуты, а дополнительные полосковые проводники разомкнуты. 3 ил.

Формула изобретения RU 2 504 870 C1

Микрополосковый широкополосный полосно-пропускающий фильтр, содержащий диэлектрическую подложку, на одну сторону которой нанесено заземленное основание, а на вторую сторону параллельно друг другу нанесены прямолинейные полосковые проводники резонаторов, связанные электромагнитно и кондуктивно, и дополнительные полосковые проводники, боковые стороны которых соединены с соседствующими резонаторами, отличающийся тем, что только проводники наружных резонаторов одним концом короткозамкнуты, а дополнительные полосковые проводники разомкнуты.

Документы, цитированные в отчете о поиске Патент 2014 года RU2504870C1

МИКРОПОЛОСКОВЫЙ ГРЕБЕНЧАТЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 1998
  • Беляев Б.А.
  • Лексиков А.А.
  • Шепов В.Н.
  • Шихов Ю.Г.
RU2148286C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2008
  • Беляев Борис Афанасьевич
  • Лексиков Александр Александрович
  • Тюрнев Владимир Веньяминович
RU2362241C1
МИКРОПОЛОСКОВЫЙ ГРЕБЕНЧАТЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2001
  • Шепов В.Н.
  • Дрокин Н.А.
RU2211507C2
МИКРОПОЛОСКОВЫЙ ПОЛОСОВОЙ ФИЛЬТР ГРЕБЕНЧАТОЙ СТРУКТУРЫ 2001
  • Владимиров В.М.
  • Кулинич С.Н.
  • Шихов Ю.Г.
RU2209492C1
US 5291161 A, 01.03.1994
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1

RU 2 504 870 C1

Авторы

Беляев Борис Афанасьевич

Лексиков Александр Александрович

Сержантов Алексей Михайлович

Волошин Александр Сергеевич

Бальва Ярослав Федорович

Даты

2014-01-20Публикация

2012-08-14Подача