СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ НАСЫЩЕННОСТИ ОБРАЗЦОВ ГОРНОЙ ПОРОДЫ С ИСПОЛЬЗОВАНИЕМ ЗНАЧЕНИЙ НАЧАЛЬНОЙ И КОНЕЧНОЙ ВОДОНАСЫЩЕННОСТИ Российский патент 2014 года по МПК G01N23/83 

Описание патента на изобретение RU2505802C1

Изобретение относится к области нефтехимической промышленности и может быть использовано в промысловых и научно-исследовательских лабораториях для разработки технологий увеличения нефтеотдачи пластов и при подсчете запасов нефти, оперативном контроле за разработкой нефтяных месторождений.

Предлагаемый способ применим в экспериментах по определению зависимости коэффициентов относительной фазовой проницаемости воды и нефти от водонасыщенности в условиях приближенных к пластовым (ОСТ 39-235-89). Коэффициенты относительной фазовой проницаемости используются при разработке проектов эксплуатации нефтяных месторождений.

Известен способ определения водонасыщенности керна осуществляемый путем совместной фильтрации минерализованной воды и нефти через образец керна и измерения в процессе фильтрации промежуточной интенсивности рентгеновского излучения, прошедшего через образец, измерения интенсивности рентгеновского излучения при 100%-ной насыщенности водой, измерения интенсивности рентгеновского излучения, прошедшего через сухой образец и определения водонасыщенности по зависимости (Скрипкин А.Г., Щемелинин Ю.А. Патент на изобретение №2315978 Способ определения водонасыщенности керна. Приоритет изобретения 14 сентября 2006 г.). Данный способ требует дополнительных измерений отношения массовых коэффициентов поглощения рентгеновского излучения в нефти и минерализованной воде, кроме того, в данном способе необходимо проводить дополнительное сканирование сухого, насыщенного минерализованной водой на 100% образца, что существенно увеличивает время проведения измерений.

Известен способ определения водонасыщенности с помощью полихроматической рентгеновской системы с контролем насыщенности пород коллектора жидкостями по поглощению рентгеновского излучения (Кузнецов A.M. Научно-методические основы и исследования влияния свойств пород-коллекторов на эффективность извлечения углеводородов из недр, Автореферат диссертации на соискание ученой степени доктора технических наук, М., 1998), взятый за прототип. Данные об интенсивности рентгеновского излучения собирают при движении рентгеновской трубки, коллиматора и детектора как единиц ячейки вдоль горизонтальной оси исследуемого образца от входного сечения к выходному. Моделируют пластовые условия. Водонасыщенность пород коллектора керна рассчитывают на основе закона Ламберта, используя линейность полулогарифмической зависимости рентгеновского излучения, измеренного при 100% насыщенности образца меченой жидкости и 100% насыщенностью не меченой жидкостью по математической формуле, для чего измеряют промежуточную (текущую) интенсивность рентгеновского излучения, прошедшего через образец; интенсивность рентгеновского излучения при 100%-ной насыщенности нефтью; интенсивность рентгеновского излучения при 100%-ной насыщенности водой. При этом меченой может быть как водяная фаза (в качестве метки используют йодид натрия), так и нефтяная (метка - йодоктан). Данный способ методически сложен, требует временных затрат на проведение процедуры насыщения образца последовательно меченой и немеченой жидкостями на 100% для калибровки. Кроме того, сравнительный анализ, проведенный при фильтрации меченой воды, показывает, что добавление метки (йодистый натрий, йодистый калий и т.д.) приводит к существенному (до 10%) изменению проницаемости исследуемых образцов по воде. Это явление связано с изменением смачиваемости поверхности образца горной породы при воздействии меченой воды. Также некоторые йодсодержащие органические вещества (йодоктан, октил йодистый) частично растворяются в воде.

Еще одним недостатком описанного способа является то, что для различных моделей рентгеновских аппаратов фактически устанавливаемые значения напряжения и тока рентгеновской трубки отличаются от заданных на величину, определяемую дискретностью оцифровки сигнала (квантовый шум). В этой связи, при последовательном сканировании водо- нефтенасыщенных образцов горной породы несколько раз, среднее значение сигнала детектора, при прочих равных условиях, изменяется. Таким образом, при определении насыщенности керна с использованием нескольких сканирований образцов появляется систематическая погрешность.

Поставлена задача разработать экспрессный и информативный способ для определения водо- и нефтенасыщенности пород керна в условиях приближенных к пластовым (повышенного давления и температуры).

Технический результат способа заключается в уменьшении времени на проведение измерения водонасыщенности пород керна, а также в увеличении точности определения значений водонасыщенности.

Технический результат достигается тем, что в известном способе определения водонасыщенности керна, включающем приготовление образца керна, моделирование пластовых условий в образце керна, совместную фильтрацию минерализованной воды и нефти через образец керна в различных соотношениях, измерение в процессе фильтрации промежуточной интенсивности рентгеновского излучения, прошедшего через образец и установление по математическим формулам водонасыщенности, новым является то, что перед проведением измерения, в образце керна задают значение начальной водонасыщенности, производят сканирование образца горной породы с начальной водонасыщенностью, причем при измерении используются пониженные значения напряжения и тока рентгеновской трубки, получают опорный сигнал путем сканирования металлической пластины расположенной за образцами горной породы, для фильтрации используют нефть с добавлением йодобензина (C6H5I), (значение остаточной водонасыщенности получают после фильтрационного эксперимента выпариванием воды) из образца при температуре 110-160ºС, производят сканирование образца горной породы с конечной водонасыщенностью, затем значения начальной, конечной водонасыщенности и опорного сигнала используют для определения промежуточной водонасыщенности по математической зависимости:

где Sвн - значение начальной водонасыщенности образца, д.ед.;

Sвк - конечная водонасыщенность образца, д.ед.;

Iвн, - сигнал детектора при просвечивании рентгеновским излучением образца керна с начальной водонасыщенностью и опорный сигнал;

Iвк, - сигнал детектора при просвечивании рентгеновским излучением образца керна с конечной водонасыщенностью и опорный сигнал;

I, Ion - сигнал детектора при просвечивании рентгеновским излучением образца керна с промежуточной водонасыщенностью и опорный сигнал;

Нефтенасыщенность образца определяется из условия заполненности порового пространства:

Начальная водонасыщенность задается перед фильтрационным экспериментом с погрешностью около 1%, например, методами на полупроницаемой мембране, центрифугированием или вытеснением воды нефтью. Конечная водонасыщенность определяется после фильтрационного эксперимента при выпаривании воды из образца с погрешностью около 2%. Использование в вычислениях известных и заданных с большой точностью значений начальной и конечной водонасыщенностей позволяет увеличить точность и достоверность определения значений водонасыщенности.

Использование опорного сигнала позволяет уменьшить систематическую погрешность измерений, что повышает точность определения значений водонасыщенности.

Отказ от сканирования насыщенного на 100% минерализованной водой образца позволяет сократить время измерения водонасыщенности.

Использования пониженных значений напряжения и тока рентгеновской трубки позволяет существенно увеличить срок службы рентгеновского оборудования. Растворимый в нефти и не растворимый в воде йодобензин (C6H5I) используется для увеличения поглощения рентгеновского излучения в его смеси с нефтью. Это увеличивает контрастность сигнала при сканировании водонефтенасыщенных образцов горной породы, что в свою очередь повышает точность определения нефтенасыщенности.

Предлагаемый способ применим в экспериментах по определению зависимости коэффициентов относительной фазовой проницаемости воды и нефти от водонасыщенности в условиях приближенных к пластовым (ОСТ 39-235-89).

На фигуре приведена графическая зависимость сравнения водонасыщенностей, определенных методом сопротивления и рентгеновским методом.

Перед проведением эксперимента по определению фазовых проницаемостей по воде и нефти для цилиндрического образца горной породы (сцементированного песчаника) диаметром 30 мм и длиной от 40 мм до 70 мм определяют объем пор (ОСТ 39-181-85). Образец керна экстрагируют и высушивают в термошкафу при температуре 100-110ºС до постоянной массы. Образец насыщают под вакуумом пластовой водой либо моделью пластовой воды и помещают в капилляриметр. Создают и измеряют начальную водонасыщенность. Часть пор, не занятую водой заполняют моделью нефти. Для этого образец помещается в керосин, выдерживается 23-25 часов, затем образец помещают в витоновую манжету внутри рентгенопрозрачного кернодержателя. Подают в образец нефть с добавлением йодобензина и увеличивают давление в образцах до перового, при этом в пространство между стенкой кернодержателя и манжетой подают минеральное масло, создающее давление обжима образца. Давление обжима увеличивают до значения на 3-5 МПа превышающее поровое давление. Проводят прогрев кернодержателя с образцами до пластовой температуры. На стенке кернодержателя за образцом керна закрепляют металлическую (медную) пластину толщиной 2-3 мм. Толщина пластины подбирается таким образом, чтобы при просвечивании рентгеновским излучением образца горной породы и пластины значение сигнала зарегистрированного детектором было одинаковым. На следующем этапе фильтруют через образцы модель нефти с добавлением йодобензина около 5 поровых объемов. Включают рентгеновский аппарат и производят сканирование образца горной породы с начальной водонасыщенностью и металлической пластины - просвечивают кернодержатель коллимированным пучком рентгеновского излучения, с помощью детектора измеряют интенсивность прошедшего излучения, каретка с рентгеновским аппаратом и детектором смещают вдоль образца керна и металлической пластины с шагом 0,8 мм, на каждом шаге проводят измерение интенсивности излучения. Проводят усреднение сигнала детектора отдельно для участка сканирования образца горной породы и металлической пластины. Усреднение сигнала проводят для того, чтобы получить среднюю по объему образца водонасыщенность. Напряжение на рентгеновской трубке - 65-75 кВ, ток - 180-195 мкА. При сканировании ток трубки подбирают таким образом, чтобы сигнал с детектора был не менее 4/5 от верхней границы измерения детектора, выбранное значение напряжения и тока не меняется в течение всего эксперимента.

Проводят совместную фильтрацию минерализованной воды и нефти в соотношениях 25:75, 50:50, 75:25 и 100% воды. При каждом соотношении проводят сканирование образца, измеряют среднее значение сигнала детектора I.

Образец извлекают из кернодержателя и помещают в камеру экстрактора (аппарата Закса). При температуре 110-160ºС в течение 6 часов из образца выпаривают воду. Конечную водонасыщенность определяют по количеству сконденсированной воды в пробирке.

Найденные значения начальной и конечной водонасыщенности Sвн и Sвк, а также средние значения сигнала с детектора при сканировании образца керна с начальной, конечной и промежуточной водонасыщенностью подставляют в формулу

Определяют водонасыщенность образца керна в условиях повышенного давления и температуры для каждого режима совместной фильтрации воды и нефти.

Сравнение экспериментальных данных для образцов различных месторождений Западной Сибири приведено на фигуре. По оси абсцисс отложена водонасыщенность полученная методом сопротивлений, а на оси ординат - рентгеновским методом. На графике также построена прямолинейная зависимость с единичным наклоном, выходящая из начала координат.

Похожие патенты RU2505802C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНАСЫЩЕННОСТИ КЕРНА 2006
  • Скрипкин Антон Геннадьевич
  • Щемелинин Юрий Алексеевич
RU2315978C1
СПОСОБ ОПРЕДЕЛЕНИЯ НЕФТЕНАСЫЩЕННОСТИ ПОРОДЫ 2007
  • Скрипкин Антон Геннадьевич
RU2360233C1
Способ определения коэффициента извлечения нефти в режиме истощения в низкопроницаемых образцах горных пород 2020
  • Скрипкин Антон Геннадьевич
  • Шульга Роман Сергеевич
  • Осипов Сергей Владимирович
RU2747948C1
Способ создания остаточной водонасыщенности на слабосцементированном керне для проведения потоковых исследований 2020
  • Загоровский Алексей Анатольевич
  • Комисаренко Алексей Сергеевич
RU2748021C1
Способ определения фильтрационных свойств кавернозно-трещиноватых коллекторов 2023
  • Черемисин Николай Алексеевич
  • Гильманов Ян Ирекович
  • Шульга Роман Сергеевич
RU2817122C1
Способ определения относительных фазовых проницаемостей 2024
  • Гимазов Азат Альбертович
  • Сергеев Евгений Иванович
  • Муринов Константин Юрьевич
  • Гришин Павел Андреевич
  • Черемисин Алексей Николаевич
  • Зобов Павел Михайлович
  • Бакулин Денис Александрович
  • Мартиросов Артур Александрович
  • Юнусов Тимур Ильдарович
  • Маерле Кирилл Владимирович
  • Бурухин Александр Александрович
RU2818048C1
Способ определения коэффициента вытеснения нефти в масштабе пор на основе 4D-микротомографии и устройство для его реализации 2021
  • Кадыров Раиль Илгизарович
  • Глухов Михаил Сергеевич
  • Стаценко Евгений Олегович
  • Нгуен Тхань Хынг
RU2777702C1
Способ определения коэффициента вытеснения нефти 2020
  • Пенигин Артем Витальевич
  • Главнов Николай Григорьевич
  • Сергеев Евгений Иванович
  • Мухаметзянов Искандер Зинурович
  • Вершинина Майя Владимировна
RU2753964C1
Устройство для измерения относительных фазовых проницаемостей в пористой среде при ее трехфазной насыщенности 2023
  • Ложкин Михаил Георгиевич
  • Рогалев Максим Сергеевич
RU2822821C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНАСЫЩЕННОСТИ КЕРНА 2011
  • Сушко Борис Константинович
  • Ямалетдинова Клара Шаиховна
  • Гоц Сергей Степанович
  • Мухаметзянова Алина Флоритовна
  • Зарипов Альберт Рашитович
RU2484453C1

Реферат патента 2014 года СПОСОБ КОЛИЧЕСТВЕННОГО ОПРЕДЕЛЕНИЯ НАСЫЩЕННОСТИ ОБРАЗЦОВ ГОРНОЙ ПОРОДЫ С ИСПОЛЬЗОВАНИЕМ ЗНАЧЕНИЙ НАЧАЛЬНОЙ И КОНЕЧНОЙ ВОДОНАСЫЩЕННОСТИ

Использование: для количественного определения насыщенности образцов горной породы. Сущность: заключается в том, что выполняют приготовление образца керна, моделирование пластовых условий в образце керна, совместную фильтрацию минерализованной воды и нефти через образец керна, измерение в процессе фильтрации промежуточной интенсивности рентгеновского излучения, прошедшего через образец, и установление по математическим формулам водонасыщенности, при этом измеряют интенсивность рентгеновского излучения, прошедшего через образец с начальной и конечной водонасыщенностью, получают опорный сигнал, значение остаточной водонасыщенности получают после фильтрационного эксперимента выпариванием воды из образца при температуре 110-160°C, значения начальной, остаточной водонасыщенности и опорного сигнала используют для определения промежуточной водонасыщенности по определенной математической зависимости. Технический результат: уменьшение времени на проведение измерения водонасыщенности пород керна, а также увеличение точности определения значений водонасыщенности. 2 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 505 802 C1

1. Способ количественного определения насыщенности образцов горной породы с использованием значений начальной и конечной водонасыщенности, включающий приготовление образца керна, моделирование пластовых условий в образце керна, совместную фильтрацию минерализованной воды и нефти через образец керна, измерение в процессе фильтрации промежуточной интенсивности рентгеновского излучения, прошедшего через образец и установление по математическим формулам водонасыщенности, отличающийся тем, что измеряют интенсивность рентгеновского излучения, прошедшего через образец с начальной и конечной водонасыщенностью, получают опорный сигнал, значение остаточной водонасыщенности получают после фильтрационного эксперимента выпариванием воды из образца при температуре 110-160°C, значения начальной, остаточной водонасыщенности и опорного сигнала используют для определения промежуточной водонасыщенности по математической зависимости:

где SBH - значение начальной водонасыщенности образца, д.ед;
SBK - значение конечной водонасыщенности образца, д.ед.;
Iвн, - сигнал детектора при просвечивании рентгеновским излучением образца керна с начальной водонасыщенностью и опорный сигнал;
Iвк, - сигнал детектора при просвечивании рентгеновским излучением образца керна с конечной водонасыщенностью и опорный сигнал;
I, Ion - сигнал детектора при просвечивании рентгеновским излучением образца керна с промежуточной водонасыщенностью и опорный сигнал.

2. Способ по п.1, отличающийся тем, что для фильтрации используют нефть с добавлением йодобензина.

3. Способ по п.1, отличающийся тем, что при проведении измерений используются пониженные значения напряжения и тока рентгеновской трубки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2505802C1

Кузнецов A.M
Научно-методические основы и исследования влияния свойств пород-коллекторов на эффективность извлечения углеводородов из недр.: Автореф
на соиск
учен
степени д-ра технич
наук
- М., 1998
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНАСЫЩЕННОСТИ КЕРНА 2006
  • Скрипкин Антон Геннадьевич
  • Щемелинин Юрий Алексеевич
RU2315978C1
US 5984023 А, 16.11.1999
US 6178807 В1, 30.01.2001
US 5048328 А, 17.09.1991
WO 2006063711 A2, 22.06.2006.

RU 2 505 802 C1

Авторы

Скрипкин Антон Геннадьевич

Даты

2014-01-27Публикация

2012-06-14Подача