Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении систем генерирования электрической энергии (СГЭЭ) трехфазного переменного тока для летательных аппаратов, в которых для достижения качественных показателей выходной энергии применяются статический преобразователь электрической энергии (СПЭЭ) с инвертором напряжения (ИН). Первичными источниками с нестабильными параметрами входной энергии в таких системах служит синхронный генератор с переменной скоростью вращения вала. Функция обеспечения качественных показателей генерируемой электрической энергии возлагается на статический преобразователь и выходной силовой низкочастотный фильтр.
Для указанного применения систем генерирования важным показателем является масса и габариты всех элементов системы, при проектировании которых необходимо стремиться к ее уменьшению. Массогабаритные показатели системы генерирования в значительной степени определяются величиной коэффициента полезного действия (η) отдельных ее элементов, поэтому возникает задача повышения величины данного коэффициента.
Известна система генерирования электрической энергии трехфазного переменного тока с инвертором напряжения [Харитонов С.А. Интегральные параметры и характеристики инверторов напряжения в составе систем генерирования переменного тока типа "переменная скорость - постоянная частота" для ветроэнергетических установок. Научный вестник НГТУ, Новосибирск, 1999. №2 (7). 92-120 С.], содержащая трехфазный синхронный генератор с выводом нулевого провода, статический преобразователь электрической энергии на базе трехфазного мостового выпрямителя, двух конденсаторов фильтра в звене постоянного тока, соединенных последовательно, и трехфазного мостового инвертора напряжения с тремя низкочастотными LC фильтрами, нулевой провод нагрузки системы соединен с нулевым проводом генератора и средней точкой конденсаторов фильтра в звене постоянного тока.
Данная система обладает рядом недостатков. Соединение нулевого провода синхронного генератора с нагрузкой системы генерирования и средней точкой конденсаторов фильтра в звене постоянного тока приводит к увеличению тока генератора примерно в
Кроме того, известна система генерирования электрической энергии трехфазного переменного тока с инвертором напряжения [Харитонов С.А., Коробков Д.В., Хлебников А.С. и др. Некоторые результаты разработки системы электропитания для летательного аппарата. Техническая электродинамика, тематический выпуск «Силовая электроника и энергоэффективность». Киев. Институт электродинамики НАН, 2010 г. T.1. С.88-89], которая является прототипом предлагаемого изобретения, содержащая трехфазный синхронный генератор, статический преобразователь электрической энергии на базе трехфазного мостового выпрямителя, входы которого подключены к выходам синхронного генератора, двух конденсаторов фильтра в звене постоянного тока, соединенных последовательно и включенных параллельно выходным зажимам выпрямителя, и трехфазного мостового инвертора напряжения, входы которого подключены к выходам выпрямителя, а выходы - к входам трех низкочастотных LC фильтров, нулевой провод нагрузки системы генерирования соединен со средней точкой конденсаторов фильтра в звене постоянного тока (фиг.1).
Недостатком данной системы является необходимость установки параллельно конденсаторам фильтра звена постоянного тока относительно низкоомных резисторов R, которые необходимы для уменьшения постоянной составляющей в выходном напряжении системы генерирования, возникающей в связи с различием статических и динамических характеристик силовых транзисторов инвертора, а также и в связи с неточностью воспроизведения закона управления силовыми транзисторами инвертора [Грабовецкий Г.В., Коробков Д.В., Харитонов С.А. Особенности работы инвертора напряжения в системе генерирования электрической энергии летательного аппарата. №1 (18), январь-июнь, с.69-79]. В данной работе, в частности, показано, что для подавления постоянной составляющей в выходном напряжении системы генерирования с помощью отрицательной обратной связи с интегральным регулятором при условии, что величина постоянной составляющей без обратной связи равнялась 1.6 В, необходимо выполнение условия R<(8÷10)Rн0, где Rн0 - сопротивление нагрузки системы генерирования по постоянному току. Учитывая, что напряжение на резисторах R примерно равно
Задача изобретения - снижение массы и габаритов системы генерирования за счет повышения величины коэффициента полезного действия отдельных ее элементов.
Поставленная задача достигается тем, что в известной системе генерирования электрической энергии трехфазного переменного тока с инвертором напряжения, содержащей трехфазный синхронный генератор, статический преобразователь электрической энергии на базе трехфазного мостового выпрямителя, входы которого подключены к выходам синхронного генератора, двух конденсаторов фильтра в звене постоянного тока, соединенных последовательно и включенных параллельно выходным зажимам выпрямителя, и трехфазного мостового инвертора напряжения, входы которого подключены к выходам выпрямителя, а выходы - к входам трех низкочастотных LC фильтров, нулевой провод нагрузки системы генерирования соединен со средней точкой конденсаторов фильтра в звене постоянного тока, вводится катушка индуктивности, которая одним выводом подключается к нулевому проводу нагрузки системы генерирования, а другим - к нулевому выводу статорной трехфазной обмотки синхронного генератора.
Схема предлагаемой системы генерирования электрической энергии трехфазного переменного тока с инвертором напряжения приведена на фиг.2.
Система генерирования включает синхронный генератор (1) с возбуждением от постоянных магнитов и трехфазной обмоткой на статоре (ТО) с выводом нулевого провода (Nсг), статический преобразователь электрической энергии (2) и низкочастотный LC фильтр (3). В состав статического преобразователя (2) входят выпрямитель (4), который может быть как неуправляемым, так и управляемым, в последнем варианте он может быть реализован на любых управляемых силовых ключах; два конденсатора звена постоянного тока (5, 6), включенные последовательно с выводом средней точки NС, инвертор напряжения (7). Низкочастотный LC фильтр (3) может быть реализован по любой известной схеме подобных фильтров, на фиг.2 в качестве примера приведена схема Г-образного LC фильтра второго порядка. Следует отметить, что конденсаторы фильтра могут быть включены в треугольник.
Выводы трехфазной обмотки (ТО) генератора (1) соединены с соответствующими трехфазными вводами (ТВ) статического преобразователя (2), в котором они соединяются с трехфазными вводами выпрямителя (4). Параллельно выводам постоянного тока выпрямителя (4) подключены конденсаторы (5, 6), соединенные между собой последовательно, а их средняя точка NС соединена с нулевым проводом Nн нагрузки системы генерирования (9) и одним из выводов катушки индуктивности (8), второй вывод которой соединен с выводом нулевого провода Nсг синхронного генератора. Вводы постоянного тока инвертора напряжения (7) соединены с выводами постоянного тока выпрямителя (4), три вывода переменного тока инвертора соединены с одноименными вводами низкочастотного LC фильтра, выводы которого подключены к нагрузке системы генерирования (9).
Предлагаемая система функционирует следующим образом.
Индуктивность L0 катушки индуктивности (8) выбирается из условия:
где ωСГ min - минимальная циклическая частота напряжения синхронного генератора, C - величина емкости конденсаторов (5, 6).
Выбор величины L0 в соответствии с соотношением (1) сохраняет «шестипульсный» режим работы выпрямителя, т.к. для токов с частотой 3ωСГ min электрическая цепь между точками NСГ и NС имеет очень большое сопротивление. При этом по постоянному току эта цепь имеет практически нулевое сопротивление, роль сопротивления R в схеме на фиг.1 будет выполнять выходное сопротивление по постоянному току трехфазной нулевой схемы выпрямления (Rэкв), максимальная величина которого согласно [Каганов И.Л. Электронные и ионные преобразователи. Часть III / И.Л.Каганов. - М.: Государственное энергетическое издательство, Москва, 1956. - 528 с., ил.] будет равна:
где ωСГ max - максимальная циклическая частота напряжения синхронного генератора, Ld, Lq - индуктивности СГ по продольной и поперечной осям.
Очевидно, что величина сопротивления будет удовлетворять неравенству
так как величина
Таким образом, в предложенной схеме системы генерирования не возникает проблем с отработкой постоянной составляющей в выходном напряжении системы генерирования, т.к. выполняется неравенство (3), исключается резистор R, что уменьшает электрические потери в элементах системы генерирования, повышается коэффициент полезного действия и, как следствие, уменьшаются масса и габариты системы.
название | год | авторы | номер документа |
---|---|---|---|
СИСТЕМА ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ТРЕХФАЗНОГО ПЕРЕМЕННОГО ТОКА ПОВЫШЕННОГО НАПРЯЖЕНИЯ | 2012 |
|
RU2521419C2 |
СИСТЕМА ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ТРЕХФАЗНОГО ПЕРЕМЕННОГО ТОКА | 2011 |
|
RU2507670C2 |
Устройство генерирования напряжения переменного тока постоянной частоты при переменной частоте вращения привода генератора | 2016 |
|
RU2641314C1 |
ТУРБОГЕНЕРАТОРНАЯ УСТАНОВКА | 2006 |
|
RU2306664C1 |
ВЕКТОРНЫЙ СПОСОБ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ СТАТИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЕМ ПРИ НЕСИММЕТРИЧНОЙ НАГРУЗКЕ | 2010 |
|
RU2444833C1 |
СПОСОБ УПРАВЛЕНИЯ ТРЕХФАЗНЫМ СТАТИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЕМ ПРИ НЕСИММЕТРИЧНОЙ НАГРУЗКЕ | 2010 |
|
RU2442275C1 |
СИСТЕМА ДЛЯ ГЕНЕРИРОВАНИЯ ЭЛЕКТРОЭНЕРГИИ ТРЁХФАЗНОГО ПЕРЕМЕННОГО ТОКА | 2016 |
|
RU2622898C1 |
СПОСОБ УПРАВЛЕНИЯ СТАТИЧЕСКИМ ПРЕОБРАЗОВАТЕЛЕМ В СИСТЕМЕ ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПЕРЕМЕННОГО ТОКА В РЕЖИМЕ КОРОТКОГО ЗАМЫКАНИЯ | 2011 |
|
RU2517300C2 |
ВЕКТОРНЫЙ СПОСОБ УПРАВЛЕНИЯ ЧЕТЫРЕХКВАДРАНТНЫМ ИНВЕРТОРОМ НАПРЯЖЕНИЯ В СОСТАВЕ СИСТЕМЫ ГЕНЕРИРОВАНИЯ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ ПЕРЕМЕННОГО ТОКА | 2000 |
|
RU2207698C2 |
Адаптивная стартер-генераторная система | 2021 |
|
RU2758793C1 |
Изобретение относится к области электротехники и силовой электроники и может быть использовано при построении систем генерирования электрической энергии трехфазного переменного тока повышенного напряжения для летательных аппаратов. Предложенная система генерирования электрической энергии трехфазного переменного тока с инвертором напряжения содержит трехфазный синхронный генератор, статический преобразователь электрической энергии на базе трехфазного мостового выпрямителя, входы которого подключены к выходам синхронного генератора, двух конденсаторов фильтра в звене постоянного тока, соединенных последовательно и включенных параллельно выходным зажимам выпрямителя, и трехфазного мостового инвертора напряжения, входы которого подключены к выходам выпрямителя, а выходы - к входам трех низкочастотных LC фильтров, нулевой провод нагрузки системы генерирования соединен со средней точкой конденсаторов фильтра в звене постоянного тока, введена катушка индуктивности, которая одним выводом подключается к нулевому проводу нагрузки системы генерирования, а другим - к нулевому выводу статорной трехфазной обмотки синхронного генератора. Технический результат - уменьшение электрических потерь в элементах и повышение коэффициента полезного действия системы в целом. 2 ил.
Система генерирования электрической энергии трехфазного переменного тока с инвертором напряжения, содержащая трехфазный синхронный генератор, статический преобразователь электрической энергии на базе трехфазного мостового выпрямителя, входы которого подключены к выходам синхронного генератора, двух конденсаторов фильтра в звене постоянного тока, соединенных последовательно и включенных параллельно выходным зажимам выпрямителя, и трехфазного мостового инвертора напряжения, входы которого подключены к выходам выпрямителя, а выходы - к входам трех низкочастотных LC фильтров, нулевой провод нагрузки системы генерирования соединен со средней точкой конденсаторов фильтра в звене постоянного тока, отличающаяся тем, что вводят катушку индуктивности, которую одним выводом подключают к нулевому проводу нагрузки системы генерирования, а другим - к нулевому выводу статорной трехфазной обмотки синхронного генератора.
ХАРИТОНОВ С.А | |||
и др | |||
Некоторые результата разработки системы электропитания для летательного аппарата | |||
Техническая электродинамика, тематический выпуск "Силовая электроника и энергоэффективность" | |||
Киев | |||
Институт электродинамики НАН, 2010 | |||
Печь для непрерывного получения сернистого натрия | 1921 |
|
SU1A1 |
ПРЕОБРАЗОВАТЕЛЬ ПОВЫШЕННОЙ HACTOt-^—- | 0 |
|
SU392592A1 |
US2003057926A1, 27.03.2003 |
Авторы
Даты
2014-04-20—Публикация
2012-06-21—Подача