Изобретение относится к области оптического приборостроения, а именно к классу мощных светодиодов «Chip-on-board», которые используются в качестве аналогов галогенных ламп, а также для потолочных, индустриальных, фасадных и других светильников.
Использование кристаллов, излучающих свет в различной цветовой гамме оптического диапазона, дает возможность получения светодиодных устройств с широким разнообразием цветов и оттенков светового потока. Основным достоинством этих устройств является их большая энергосберегаемость (малая потребляемая мощность электроэнергии) и большие практически неограниченные сроки службы по сравнению с обычными галогенными светильниками.
Наиболее важными энергетическими параметрами светодиодного устройства являются осевая сила света и индикатриса распределения светового потока по углу расходимости светового излучения на выходе устройства, которые в очень большой степени зависят от конструкции устройства на границе гель - воздух.
Известны промышленные образцы СОВ фирмы «Оптоган» [1], описание конструкций которых даны в статье [2]. Они представляют собой массив из одного или нескольких светодиодных чипов, установленных по различной топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля с кристаллами люминофора, причем наружная поверхность геля, контактирующая с воздухом, является плоской. По технической сущности эти устройства наиболее близки к предлагаемому светодиодному устройству и являются прототипом настоящего изобретения.
Данная конструкция системы не позволяет получить высоких энергетических параметров, так как используемый угол охвата прямого излучения кристалла не превышает ±40°, в то время как прямое излучение кристалла распространяется в углах ±90°, что соответствует индикатрисе излучения кристалла, представленной на Фиг.1. Это приводит к потере энергии не менее 25%, что является основным недостатком прототипа.
Целью предлагаемого изобретения является повышение энергетических параметров светодиодных устройств типа СОВ, а именно значительное увеличение осевой силы света при использовании прямого излучения кристалла чипа с углом охвата излучения не менее ±65°.
Эта цель достигается тем, что светодиодное устройство, состоящее из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку, покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, причем над каждым чипом-излучателем поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм. Диаметр этой поверхности составляет D=(1,75…2,3)Dс, где Dc - размер излучающей поверхности чипа, причем D=D0, где D0 - расстояние между оптическими осями излучателей-чипов, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может иметь над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота h и ширина t этого устройства не превышает (0,1…0,15)D. Поверхность, граничащая с воздухом, может быть выполнена на плосковыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом.
На Фиг.2 в качестве примера представлена принципиальная схема предлагаемого светодиодного устройства. В его состав входят чипы-излучатели (1), размещенные на плоской подложке (2) и покрытые общим слоем компаунда-геля (3), возможно с кристаллами люминофора, при этом расстояние между оптическими осями чипов D0, а поверхность, граничащая с воздухом, является сферической или асферической (с радиусом при вершине R не более 4 мм) и имеет диаметр D=(1,75…2,3)Dc, где Dc - размер излучающей поверхности чипа, D=D0, причем оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может быть ограничена специальным устройством (4) по всему периметру над каждым чипом, причем высота h и ширина t этого устройства не превышает (0,1…0,15)D, как это показано на Фиг.3.
Поверхность, граничащая с воздухом, может быть выполнена на плосковыпуклой линзе (5) из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом, как это видно на Фиг.4.
Конкретные варианты конструкций светодиодного устройства, соответствующие приведенному выше описанию предлагаемого изобретения, разработаны на примере использования СОВ с излучателями-чипами (1), размеры которых Dc=1,15 мм. Чипы установлены на единой плоской подложке (2) и покрыты общим слоем компаунда-геля (3), при этом расстояние между оптическими осями чипов D0=2,5 мм. Поверхность, граничащая с воздухом, является сферической с радиусом R=2,5 мм и диаметром D=2,5 мм, что соответствует 2,17Dc, причем расстояние от излучающей поверхности чипа до вершины сферической поверхности d=0,85 мм, а оптические оси этих поверхностей совпадают, как показано на Фиг.2.
Сферические поверхности с радиусом R=3 мм на границе гель - воздух диаметром D=2,2 мм могут быть ограничены специальным устройством (4) по всему периметру над каждым чипом (как показано на Фиг.3), причем высота h=0,3 мм и ширина t=0,3 мм, что составляет 0,13D.
В соответствии с Фиг.4 на поверхности компаунда-геля над каждым чипом может быть расположена без воздушного промежутка плосковыпуклая линза (5) с радиусом наружной поверхности R=3 мм, толщиной 0,7 мм и диаметром D=2,5 мм. Линзы выполнены из органического материала макролон с показателем преломления n=1,586. Расстояние между излучающей поверхностью чипа и сферической поверхностью линзы равно d=1,05 мм. Оптические оси линз и соответственных чипов совпадают.
Положительный эффект предлагаемой конструкции светодиодного устройства заключается в том, что она обеспечивает увеличение энергетических параметров на выходе системы за счет использования значительно увеличенного угла охвата излучения кристалла в пределах σ1=±65° (против σ1=±40° в прототипе), при этом потери энергии чипа уменьшаются до δE=(6…7)% (против δE=25% в прототипе).
Источники информации
[1] Электронный документ. «Мощные светодиоды» «Chip-on- board» .
[2] Статья. Е.Мухина, П.Блашто. «Технология CHIP-on-BoARD: Основные процессы и оборудование». Электроника. Наука. Технология. Бизнес, 2008 г., №3, стр.54-58.
название | год | авторы | номер документа |
---|---|---|---|
СВЕТОДИОДНОЕ УСТРОЙСТВО | 2012 |
|
RU2513645C2 |
СВЕТОДИОДНОЕ УСТРОЙСТВО | 2006 |
|
RU2317612C1 |
СВЕТОДИОДНОЕ УСТРОЙСТВО | 1997 |
|
RU2134000C1 |
ЖЕЛЕЗНОДОРОЖНЫЙ СВЕТОФОР | 2012 |
|
RU2516926C2 |
СВЕТОДИОДНОЕ ПОЛУПРОВОДНИКОВОЕ УСТРОЙСТВО В КОРПУСЕ ДЛЯ ПОВЕРХНОСТНОГО МОНТАЖА | 2003 |
|
RU2267188C2 |
СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ | 2010 |
|
RU2444676C1 |
СВЕТОДИОДНОЕ УСТРОЙСТВО | 2001 |
|
RU2187175C1 |
СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ | 2008 |
|
RU2392539C2 |
СВЕТОДИОДНЫЙ ИСТОЧНИК ИЗЛУЧЕНИЯ | 2010 |
|
RU2444091C1 |
ПОЛУПРОВОДНИКОВОЕ УСТРОЙСТВО | 2008 |
|
RU2392696C1 |
Изобретение относится к области оптического приборостроения, а именно к классу мощных светодиодов, которые используются в качестве аналогов галогенных ламп, а также для потолочных, индустриальных, фасадных и других светильников. Светодиодное устройство состоит из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, причем над каждым чипом поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм. Диаметр этой поверхности составляет D=(1,75…2,3)Dc, где Dc - размер излучающей поверхности чипа, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм. Поверхность, граничащая с воздухом, может иметь над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота h и ширина t этого устройства не превышает (0,1…0,15)D. Поверхность, граничащая с воздухом, может быть выполнена на плоскоыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом. Изобретение обеспечивает повышение энергетических параметров устройства, а именно значительное увеличение осевой силы света за счет увеличения угла охвата излучения кристалла до σ1=±65°, при этом потери чипа уменьшаются до δE=6%. 2 з.п. ф-лы, 4 ил.
1. Светодиодное устройство, состоящее из одного или нескольких излучателей-чипов, установленных по любой топографии на единую плоскую подложку и покрытых общим слоем компаунда-геля, возможно с кристаллами люминофора, отличающееся тем, что над каждым чипом-излучателем поверхность, граничащая с воздухом, является сферической или асферической с радиусом при вершине не более 4 мм, причем диаметр этой поверхности составляет D=(1,75…2,1)Dc, где Dc - размер излучающей поверхности чипа, при этом оптические оси этих поверхностей совпадают, а расстояние от поверхности чипа до вершины поверхности, граничащей с воздухом, не превышает d=1,5 мм.
2. Светодиодное устройство по п.1, отличающееся тем, что поверхности, граничащие с воздухом, имеют над каждым чипом по всему периметру поверхности устройство, ограничивающее размер D, причем высота и ширина этого устройства не превышает (0,1…0,15)D.
3. Светодиодное устройство по п.1, отличающееся тем, что поверхность, граничащая с воздухом, выполнена на плосковыпуклой линзе из любого оптического материала, в том числе из органического стекла, которая без воздушного промежутка расположена на компаунде-геле над чипом.
CN102148299A, 10.08.2011 | |||
JP2012113837A, 14.06.2012 | |||
СПОСОБ ПРИГОТОВЛЕНИЯ МАЙОНЕЗНО-БЕЛКОВОГО СОУСА | 2008 |
|
RU2372797C1 |
US2011057226A1, 10.03.2011 | |||
WO2004070839A2, 19.08.2004 | |||
СВЕТОДИОДНЫЙ МОДУЛЬ | 2010 |
|
RU2442240C1 |
RU2010114187A, 20.10.2011 |
Авторы
Даты
2014-04-20—Публикация
2012-06-27—Подача