УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ ДВУХФАЗНОГО ВЕЩЕСТВА В ЗАМКНУТОМ ЦИЛИНДРИЧЕСКОМ РЕЗЕРВУАРЕ Российский патент 2014 года по МПК G01F23/00 

Описание патента на изобретение RU2515074C1

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона.

В различных отраслях промышленности (химической, нефтеперабатывающей, пищевой и др.) в технологических процессах находят применения однокомпонентные вещества, хранимые в металлических резервуарах (баллонах и т.п.). В зависимости от физических свойств этих веществ, условий, характеризующих хранение данных веществ (значения температуры, давления в резервуаре) возможно нахождение веществ в жидкой, газообразной фазах или в виде двухфазного вещества. В последнем случае между газом и жидкостью имеется граница раздела. Во всех таких случаях имеется необходимость определять с высокой точностью количество (объем, массу) хранимого вещества независимо от его фазового состояния, которое может быть неизвестным (а часто лишь прогнозируемым).

Известны различные устройства для измерения массы двухфазного вещества в металлическом резервуаре (баллоне и т.п.), в котором возможное уменьшение массы газа вследствие его утечки из резервуара определяют путем его взвешивания. Недостатками таких устройств являются их неудобство в эксплуатации, необходимость периодической поверки весов, высокая стоимость и ограниченная область применения, обусловленная невозможностью непрерывного контроля возможной утечки вещества из резервуара. Устройства с поплавковыми уровнемерами (US 4560450, 24.12.1985) являются громоздкими, неточными и, более того, неработоспособными при реальных условиях эксплуатации резервуаров, характеризуемых наличием жидкой и газовой фаз двухфазного вещества, относительное содержание которых не является постоянным. Известные устройства с емкостными уровнемерами (US 5701932, 30.12.1997; DE 3731793, 03.03.1989) не являются высокоточными, поскольку применимы лишь при наличии четкой границы раздела жидкой и газовой фаз вещества, что не имеет место в реальных условиях эксплуатации резервуаров, в частности баллонов с огнетушащими веществами.

В цилиндрических резервуарах имеется возможность реализовать такие датчики, используя конструктивные особенности резервуаров. Во многих практических случаях внутри такого резервуара располагается внутри него и вдоль его оси цилиндрическая металлическая труба (сифонная труба), по которой осуществляется выкачивание вещества из резервуара.

Известно также техническое решение (RU 2266464 С2, 10.11.2004; аналог - US 6836217 В2, 28.12.2004), которое по технической сущности наиболее близко к предлагаемому устройству и принято в качестве прототипа. Это устройство-прототип имеет замкнутый цилиндрический резервуар (баллон) с двухфазным веществом (диоксидом углерода) и устройство для определения его массы в резервуаре, содержащее емкостный датчик массы, образованный совокупностью металлической сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи другой металлической трубы в качестве второго проводника датчика, а также электронный блока.

Недостатком этого устройства-прототипа является зависимость результатов измерения массы двухфазного вещества от температуры, значительно снижающая точность измерения массы.

Техническим результатом предлагаемого изобретения является повышение точности определения массы двухфазного вещества в резервуаре за счет существенного уменьшения зависимости результатов измерения массы от температуры.

Технический результат достигается тем, что предлагаемое устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержит емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок, при этом длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05 ÷ 0,25 длины сифонной трубы.

На фиг.1 изображена функциональная схема устройства с укороченной снизу металлической трубой, расположенной вокруг сифонной трубы.

Здесь введены обозначения: 1 - резервуар, 2 - сифонная труба, 3 - металлическая труба, 4 - диэлектрическая шайба, 5 - горловина, 6 - электронный блок, 7 и 8 - проводники, 9 - кран, 10 - трубопровод.

Устройство работает следующим образом.

В резервуаре 1 с двухфазным веществом - диоксидом углерода, содержащем металлическую сифонную трубу 2, вокруг последней и соосно с ней размещается снаружи другая металлическая труба 3. При этом металлическая сифонная труба 2 и металлическая труба 3 являются, соответственно, потенциальным и экранным электродами коаксиального емкостного датчика массы двухфазного вещества в резервуаре. Жесткость конструкции коаксиального датчика, т.е. соосность металлической трубы 3 и сифонной трубы 2, обеспечивается с помощью нескольких (1 ÷ 4) диэлектрических шайб 4 (изготовленных из полиамида или фторопласта), устанавливаемых равномерно вдоль длины датчика (показана только одна такая шайба). Резервуар 1 имеет в верхней части горловину 5; через герметичные отверстия в них с помощью проводников 7 и 8, соответственно, верхний конец металлической трубы 3 и сифонная труба 2 подсоединены к электронному блоку 6. Электронный блок 6 содержит микропроцессор для функциональной обработки информативного сигнала от коаксиального датчика массы двухфазного вещества. Электронный блок 6 имеет, с другой стороны, высокочастотный разъем для подсоединения к этому блоку источника питания, последовательного интерфейса, сигнализации предельных значений массы двухфазного вещества. На верхнем конце резервуара имеется кран 9 на трубопроводе 10 для выпуска вещества.

Уровень жидкой фазы диоксида углерода в резервуаре зависит от температуры: чем выше температура, тем выше и уровень жидкости, вплоть до полного заполнения резервуара при некоторой температуре, близкой к критической температуре, и ее более высоких значениях.

С другой стороны, диэлектрическая проницаемость и плотность жидкой и газовой фаз диоксида углерода зависят от температуры по-разному: для жидкой фазы значения этих физических величин уменьшаются с возрастанием температуры, а для газовой фазы - увеличиваются.

Поскольку на величину электрической емкости Се емкостного датчика влияют как уровень жидкости в резервуаре, так и электрофизические параметры жидкой и газовой фаз, то результирующая зависимость Се от температуры t определяется совокупным влиянием этих физических величин. Уровень z жидкости в резервуаре определяет и степень заполнения ею пространства между проводниками датчика по высоте резервуара: если длина датчика равна высоте резервуара, то уровень z имеет место и в датчике; если же датчик укорочен снизу, то и степень его заполнения и, следовательно, величина электрической емкости Се зависят от величины этого укорочения. Отсюда следует, что, выбирая длину датчика, т.е. длину металлической трубы 3, можно регулировать величину емкости Се и ее зависимость от температуры, стремясь минимизировать такую зависимость. Укорочение длины емкостного датчика можно обеспечить путем укорочения снизу металлической трубы 3 - наружного проводника емкостного датчика; при этом длина датчика соответствует этой укороченной длине металлической трубы 3.

Обычно относительный объем заполнения резервуара составляет 2/3, то есть удельная масса mж+г = Мж+г/V содержащегося в резервуаре диоксида углерода равна 0,666 кг/дм3. Найдем относительные значения уровня z/l жидкого диоксида углерода, соответствующего данной удельной массе mж+г, при различных значениях температуры. Для этого может быть записано следующее соотношение:

m ж + г = z l ρ ж + ( 1 z l ) ρ г ( 1 )

где ρж и ρг - плотность, соответственно, жидкой и газовой фаз вещества в резервуаре при некоторой температуре t.

Отсюда находим:

z l = m ж + г ρ г ρ ж ρ г ( 2 )

Для значений температуры -39°С,+25°С, соответственно, находим:

1) t = -39°С; в этом случае ρж = 1,114 кг/дм3, ρг = 0,027 кг/дм3; тогда согласно (2) при mм+г = 0,666 кг/дм3 получаем: z/l = 0,588;

2) t = +25°С; в этом случае ρж = 0,713 кг/дм3, ρг = 0,242 кг/дм3; тогда согласно (2) при mм+г = 0,666 кг/дм3 находим: z/l = 0,9.

При иной удельной массе mм+г заполнения резервуара полученные численные значения будут другими, соответствующими конкретному относительному объему заполнения резервуара.

Электрическая емкость Се датчика, укороченного снизу на величину l0 (по сравнению с длиной датчика l, равной высоте резервуара), выражается следующей формулой:

C e ( t ) = ( z ( t ) l 0 ) ε ж ( t ) C 0 + ( l z ) ε г ( t ) C 0 ( 3 )

где значения Се, z, εж, εг записаны как функции температуры; l0 - величина укорочения снизу емкостного датчика. При l0 = 0 длина датчика равна высоте резервуара.

Здесь z(t) и εг(t) увеличиваются, а εж(t) уменьшается с возрастанием t. Длина l0 является тем параметром, варьируя который, можно свести к минимуму зависимость Се от t.

Для оценки длины l0 сравним значения электрической емкости укороченного датчика при различных температурах: - 39°С,+25°С. Формулу (3) запишем в следующем виде:

C e C 0 l = z l ε ж l 0 l ε ж + ( 1 z l ) ε г ( 4 )

1. При t = - 39°С имеем следующие данные: Δz/l = 0,588; εж = 1,722; εг = 1,014;

при этом уравнение (4) принимает следующий вид:

C e C 0 l = 1,43 1,722 l 0 l ( 5 )

2. При t = + 25°С: Δz/l = 0,9; εж = 1,425; εг = 1,132 соотношение (4) принимает вид

C e C 0 l = 1,3957 1,425 l 0 l ( 6 )

Приравняв правые части соотношений (5) и (6), находим: l0/l = 0,145.

Итак, если выбрать величину l0/l ≈ 0,15, можно практически устранить (т.е. снизить до весьма малых значений) температурную зависимость электрической емкости датчика в большей части рабочего диапазона значений температуры. При иной длине l0 в пределах значений l0/l ≈ 0,05 ÷ 0,25 можно иметь несколько большую температурную зависимость, но находящуюся в пределах, допустимых с точки зрения погрешности измерения; этот диапазон возможных значений l0/l охватывает и возможные иные реальные значения относительного объема начального заполнения резервуара. Данное укорочение емкостного датчика обеспечивается уменьшением снизу на 0,05 ÷ 0,25 длины металлической трубы 3 по сравнению с длиной сифонной трубы 2.

Отметим, что данные численные значения могут быть уточнены (т.е. заданы в более узком диапазоне) при экспериментальных исследованиях датчика для каждого двухфазного вещества и для конкретной степени заполнения им резервуара.

Таким образом, предлагаемое устройство позволяет практически устранить (т.е. снизить до весьма малых значений) температурную зависимость электрической емкости емкостного датчика массы двухфазного вещества в резервуаре и, следовательно, результатов измерения массы. Данное устройство применимо при наличии в резервуаре как диоксида углерода, так и других двухфазных веществ. Применение данного устройства дает возможность с высокой точностью определять суммарную массу двухфазных однокомпонентных веществ в металлических цилиндрических резервуарах независимо от их фазового состояния.

Похожие патенты RU2515074C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ ДВУХФАЗНОГО ВЕЩЕСТВА В ЗАМКНУТОМ ЦИЛИНДРИЧЕСКОМ РЕЗЕРВУАРЕ 2016
  • Совлуков Александр Сергеевич
  • Терешин Виктор Ильич
RU2626303C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ МАССЫ СЖИЖЕННОГО ГАЗА 2002
  • Совлуков А.С.
  • Терешин В.И.
RU2246702C2
СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ СЖИЖЕННОГО ГАЗА В ЕМКОСТИ 2002
  • Совлуков А.С.
  • Терешин В.И.
RU2262667C2
УСТРОЙСТВО ДЛЯ ПОЖАРОТУШЕНИЯ 2011
  • Пустынников Сергей Сергеевич
  • Совлуков Александр Сергеевич
  • Терешин Виктор Ильич
RU2476760C2
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ СЖИЖЕННОГО ГАЗА В ЗАМКНУТОМ РЕЗЕРВУАРЕ 2010
  • Лункин Борис Васильевич
  • Азмайпарашвили Заал Алексеевич
RU2427805C1
СПОСОБ ОПРЕДЕЛЕНИЯ МАССЫ СЖИЖЕННОГО УГЛЕВОДОРОДНОГО ГАЗА В РЕЗЕРВУАРЕ 2012
  • Совлуков Александр Сергеевич
  • Терешин Виктор Ильич
RU2506545C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ ДВУХФАЗНЫХ ПОТОКОВ СПЛОШНЫХ СРЕД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1992
  • Майсурадзе П.А.
  • Кикнадзе Г.И.
  • Гачечиладзе И.А.
  • Плещ А.Г.
  • Майсурадзе А.П.
RU2037811C1
СПОСОБ ГАЗОДИСПЕРСНОГО ТУШЕНИЯ ПОЖАРОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Селиверстов Владимир Иванович
  • Стенковой Владимир Ильич
RU2370293C1
СПОСОБ ТУШЕНИЯ ПОЖАРА В РЕЗЕРВУАРЕ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Селиверстов В.И.
  • Стенковой В.И.
  • Веретинский П.Г.
  • Ивашков В.П.
  • Кашпоров Л.Я.
  • Крестинин В.В.
  • Кусков Н.А.
  • Трубникова Г.В.
RU2258549C1
СПОСОБ ТУШЕНИЯ ПОЖАРА, СОСТАВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Селиверстов Владимир Иванович
  • Стенковой Владимир Ильич
  • Веретинский Павел Геннадьевич
  • Кусков Николай Арсентьевич
  • Осьмаков Дмитрий Дмитриевич
  • Ржавский Лев Владиславович
  • Трубникова Галина Владимировна
  • Гильфанова Альфия Сахаповна
RU2393901C1

Реферат патента 2014 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ МАССЫ ДВУХФАЗНОГО ВЕЩЕСТВА В ЗАМКНУТОМ ЦИЛИНДРИЧЕСКОМ РЕЗЕРВУАРЕ

Изобретение относится к измерительной технике и может быть использовано для высокоточного определения массы двухфазного однокомпонентного вещества в замкнутом металлическом резервуаре цилиндрической формы независимо от фазового состояния вещества. В частности, оно может быть применено в противопожарной технике для высокоточного определения массы огнетушащего вещества, в частности диоксида углерода, в резервуаре (баллоне) и ее уменьшения вследствие возможной утечки из баллона. Предлагаемое устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержит емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок. Длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05 ÷ 0,25 длины сифонной трубы. Технический результат- повышение точности определения массы двухфазного вещества в резервуаре за счет существенного уменьшения зависимости результатов измерения массы от температуры. 1 ил.

Формула изобретения RU 2 515 074 C1

Устройство для измерения массы двухфазного вещества в замкнутом цилиндрическом резервуаре, имеющем расположенную вдоль его продольной оси металлическую сифонную трубу, содержащее емкостный датчик массы, образованный совокупностью сифонной трубы в качестве одного из проводников датчика и соосно по отношению к ней расположенной снаружи металлической трубы в качестве второго проводника датчика, и электронный блок, отличающееся тем, что длина расположенной снаружи металлической трубы уменьшена снизу по сравнению с длиной сифонной трубы, причем уменьшение длины металлической трубы составляет 0,05÷0,25 длины сифонной трубы.

Документы, цитированные в отчете о поиске Патент 2014 года RU2515074C1

УГЛЕКИСЛОТНОЕ ПРОТИВОПОЖАРНОЕ УСТРОЙСТВО 2001
  • Андреас Томас
RU2266464C2
Прибор для замера уровня сжиженных газов 1946
  • Кучков Б.П.
SU68552A1
ГИДРОДИНАМИЧЕСКИЙ УРОВНЕМЕР 1995
  • Гребенников Владимир Михайлович
  • Савинов Александр Егорович
  • Зингер Александр Матвеевич
  • Карпов Валерий Алексеевич
RU2085867C1
US 6836217 B2, 28.12.2004
US 5701932 A1, 30.12.1997

RU 2 515 074 C1

Авторы

Совлуков Александр Сергеевич

Терешин Виктор Ильич

Даты

2014-05-10Публикация

2012-12-07Подача