Настоящее изобретение относится к нефтяному машиностроению, в частности к многоступенчатым скважинным насосам для откачки пластовой жидкости высокой вязкости.
Известен многоступенчатый погружной насос для перекачки нефти, состоящий из ступеней центробежного типа, содержащих рабочие колеса и направляющие аппараты, последовательно расположенные на общем валу, заключенные в корпус и снабженные концевыми элементами (см., например, Богданов А.А. Погружные центробежные электронасосы для добычи нефти (расчет и конструирование). М.: Недра, 1968, С.21).
Недостатком данного насоса является существенное снижение развиваемого напора и КПД при повышении вязкости перекачиваемой жидкости, что приводит к вынужденному увеличению числа насосных ступеней, т.е. удорожанию установки в целом, а также к завышенным затратам мощности в процессе эксплуатации.
Наиболее близким к заявляемому является скважинный погружной насос для перекачки вязкой жидкости с твердыми включениями (такими, как водоросли, кусочки древесины, обломки металла, пластика, галька, частицы твердых нефтепродуктов), состоящий из одной ступени и применяемый при сборе разливов нефти из поврежденных нефтяных танкеров (патент US №5385447А, F04D 3/00, заявл. 26.03.1993, опубл. 31.01.1995). Насос включает в себя входной канал, спрофилированный по типу трубки Вентури для того, чтобы уменьшить кавитацию и рост вязкого погранслоя в этой области, рабочее колесо диагонального типа, установленное в расширении входного канала, осевой направляющий аппарат, расположенный непосредственно после рабочего колеса, и электродвигатель, вращающий рабочее колесо. Для сохранения необходимого уровня напора внешний диаметр насоса выполнен большим (12.5 дюймов). Конфигурация входного канала и проточных каналов рабочего колеса обусловлена требованием к необходимому кавитационному запасу описанного насоса, работающего в условиях низких входных давлений.
Однако для перекачки вязкой нефти из нефтяных скважин, когда входное давление составляет порядка 30-50 атм, это требование становится несущественным, поэтому конструкция ступени, состоящей из рабочего колеса диагонального типа и направляющего аппарата осевого типа, не будет эффективно работать в скважинных условиях. Основным недостатком описанного изобретения является значительное падение напора насоса при повышении вязкости перекачиваемой жидкости, характерное для ступеней центробежного и диагонального типов. Кроме того, большие размеры насоса не позволяют использовать его в скважинах с ограниченным диаметром обсадной колонны.
В основу настоящего изобретения поставлена задача создания скважинного погружного насоса для добычи вязкой жидкости, сохраняющего напор в широком диапазоне вязкостей.
Для достижения указанного технического результата скважинный погружной насос для перекачки вязкой нефти, содержащий насосную ступень, состоящую из осевого направляющего аппарата и рабочего колеса, согласно изобретению выполнен из множества ступеней, последовательно расположенных на общем валу и помещенных в общий корпус, а рабочее колесо выполнено осевым в виде втулки со спиральными лопастями.
В меридианном сечении проточный канал рабочего колеса выполнен конфузорным, а направляющего аппарата - диффузорным, при этом отношение площади проточного кольцевого канала рабочего колеса на входе (Sвх) к площади проточного кольцевого канала на выходе (Sвых), а для направляющего аппарата - обратное отношение Sвых/Sвх лежит в интервале от 1.0 до 1.5.
Кроме того, в рабочем колесе и направляющем аппарате отношение радиальной ширины проточного кольцевого канала к наружному радиусу канала лежит в интервале от 0.2 до 0.6.
В любом из сечений проточного канала цилиндрической поверхностью, коаксиальной оси вращения, угол между касательной к скелетной линии лопасти рабочего колеса и плоскостью, перпендикулярной оси вращения, может быть выполнен постоянным либо монотонно увеличивающимся от входа к выходу, начальное значение этого угла, являющееся входным углом лопасти, - монотонно уменьшающимся от втулки к периферии. Лопасти в направляющем аппарате могут иметь двойную кривизну и направление закрутки, противоположное направлению закрутки лопастей рабочего колеса.
Сущность заявляемого погружного насоса для перекачки вязких жидкостей поясняется чертежами, где на фиг.1 представлена общая схема насоса; на фиг.2 - рабочее колесо в аксонометрии; на фиг.3 - направляющий аппарат в аксонометрии.
Погружной насос для перекачки вязкой жидкости содержит множество ступеней 1, последовательно размещенных в корпусе 2, каждая из которых состоит из установленных неподвижно осевых направляющих аппаратов 3 и рабочих колес осевого типа 4, установленных с возможностью вращения на общем валу 5 (фиг.1). Рабочее колесо 4 содержит втулку 6, на боковой поверхности которой на равном расстоянии друг от друга установлены спиральные лопасти 7 (фиг.2). Отношение радиальной ширины проточного канала к наружному радиусу канала лежит в интервале от 0.2 до 0.6, в меридианном сечении канал рабочего колеса 4 выполнен конфузорным таким образом, чтобы отношение площади проточного кольцевого канала на входе 8 в рабочее колесо 4 к площади проточного кольцевого канала на выходе 9 из рабочего колеса 4
Осевой направляющий аппарат 3 (фиг.3) имеет втулку 10 с лопастями 11, размещенными на ее боковой поверхности. Лопасти 11 могут быть выполнены двойной кривизны и имеют направление закрутки, противоположное направлению закрутки лопастей 7 рабочего колеса 4. В меридианном сечении проточный канал направляющего аппарата 3 выполнен диффузорным, причем отношение площади проточного канала на выходе 12 из направляющего аппарата 3 к площади проточного канала на его входе 13
На фиг.4, 5, 6 приведены результаты стендовых испытаний заявляемого насоса и насосов-аналогов при повышении вязкости перекачиваемой жидкости. На фиг.4 показаны напорно-расходные характеристики ступени заявляемого насоса осевого типа, полученные для жидкостей с разными вязкостями: 1-300 сСт, 2-200 сСт, 3-100 сСт 4-1 сСт.; на фиг.5 - показаны напорно-расходные характеристики ступени насоса диагонального типа (прототипа), полученные для жидкостей с разными вязкостями: 1-300 сСт, 2-60 сСт, 3-40 сСт, 4-1 сСт; на фиг.6 - напорно-расходные характеристики ступени насоса центробежного типа, полученные для жидкостей с разными вязкостями: 1-450 сСт, 2-220 сСт, 3-55 сСт, 4-40 сСт, 5-1 сСт.
Из рисунков видно, что заявляемые осевые ступени сохраняют значение напора в широком диапазоне вязкостей, в то время как диагональные и центробежные ступени с увеличением вязкости жидкости значительно теряют в напоре.
Таким образом, заявляемая конструкция по сравнению с аналогами позволяет эффективно перекачивать жидкости в широком диапазоне вязкостей без потери напора.
название | год | авторы | номер документа |
---|---|---|---|
НАСОС ДЛЯ ПЕРЕКАЧКИ ГАЗОЖИДКОСТНОЙ СМЕСИ | 2014 |
|
RU2548327C1 |
ОТКРЫТОЕ РАБОЧЕЕ КОЛЕСО СТУПЕНИ ЭЛЕКТРОЦЕНТРОБЕЖНОГО НАСОСА | 2016 |
|
RU2626266C1 |
ПОГРУЖНОЙ МУЛЬТИФАЗНЫЙ НАСОС | 2010 |
|
RU2428588C1 |
ПОГРУЖНОЙ МУЛЬТИФАЗНЫЙ НАСОС | 2008 |
|
RU2368812C1 |
СТУПЕНЬ МНОГОСТУПЕНЧАТОГО ПОГРУЖНОГО НАСОСА ЦЕНТРОБЕЖНОГО ТИПА | 2011 |
|
RU2454567C1 |
ГАЗОСТАБИЛИЗИРУЮЩИЙ НАСОСНЫЙ МОДУЛЬ (ВАРИАНТЫ) | 2015 |
|
RU2593728C1 |
ВИХРЕВОЙ ГАЗОСЕПАРАТОР | 2017 |
|
RU2660972C1 |
НАСОС ДЛЯ ПЕРЕКАЧИВАНИЯ ГАЗОЖИДКОСТНОЙ СМЕСИ | 2019 |
|
RU2703774C1 |
АБРАЗИВОСТОЙКИЙ ГАЗОСЕПАРАТОР | 2008 |
|
RU2363842C1 |
УСТАНОВКА ПОГРУЖНОГО НАСОСА С ГЕРМЕТИЧНЫМ ДВИГАТЕЛЕМ | 2018 |
|
RU2681045C1 |
Изобретение относится к нефтяному машиностроению, в частности к многоступенчатым осевым скважинным насосам для откачки пластовой жидкости высокой вязкости. Насос содержит множество последовательно расположенных в корпусе насосных ступеней. Рабочее колесо каждой ступени выполнено осевым в виде втулки со спиральными лопастями. Угол между касательной к скелетной линии лопастей и плоскостью, перпендикулярной оси вращения, выполнен постоянным либо монотонно увеличивающимся от входа к выходу. Начальное значение этого угла, являющееся входным углом лопасти, монотонно уменьшается от втулки к периферии. Лопасти направляющего аппарата каждой ступени изготовлены с двойной кривизной и направлением закрутки, противоположным направлению закрутки лопастей рабочего колеса. Отношение радиальной ширины проточного канала в рабочем колесе и направляющем аппарате к наружному радиусу канала лежит в интервале от 0.2 до 0.6. Изобретение направлено на обеспечение перекачки жидкости в широком диапазоне вязкостей без потери напора. 1 з.п. ф-лы, 6 ил.
1. Скважинный погружной насос для перекачки вязкой нефти, содержащий насосную ступень, состоящую из осевого направляющего аппарата и рабочего колеса, отличающийся тем, что насос состоит из множества ступеней, последовательно расположенных на общем валу и помещенных в общий корпус, рабочее колесо выполнено осевым в виде втулки со спиральными лопастями, угол между касательной к скелетной линии которых и плоскостью, перпендикулярной оси вращения, выполнен постоянным либо монотонно увеличивающимся от входа к выходу, начальное значение этого угла, являющееся входным углом лопасти, - монотонно уменьшающимся от втулки к периферии, при этом лопасти направляющего аппарата изготовлены с двойной кривизной и направлением закрутки, противоположным направлению закрутки лопастей рабочего колеса, а отношение радиальной ширины проточного канала в рабочем колесе и направляющем аппарате к наружному радиусу канала лежит в интервале от 0.2 до 0.6.
2. Насос по п. 1, отличающийся тем, что в меридианном сечении проточный канал рабочего колеса выполнен конфузорным, а направляющего аппарата - диффузорным, при этом отношение площади проточного кольцевого канала рабочего колеса на входе к площади проточного кольцевого канала на выходе S
МНОГОСТУПЕНЧАТЫЙ ПОГРУЖНОЙ ОСЕВОЙ НАСОС | 2003 |
|
RU2244164C1 |
ПОГРУЖНОЙ МУЛЬТИФАЗНЫЙ НАСОС | 2008 |
|
RU2368812C1 |
Многоступенчатый нагнетатель | 1987 |
|
SU1483096A1 |
US 4280793 A1, 28.07.1981 | |||
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ РАДИАЛЬНЫХ ДАВЛЕНИИ ПОРШНЕВЫХ КОЛЕЦ | 0 |
|
SU211848A1 |
Авторы
Даты
2014-05-20—Публикация
2012-10-04—Подача