СИСТЕМА УПРАВЛЕНИЯ ДАВЛЕНИЕМ В КОЛЬЦЕВОМ ПРОСТРАНСТВЕ ОБСАДНОЙ КОЛОННЫ СКВАЖИНЫ Российский патент 2014 года по МПК E21B47/00 

Описание патента на изобретение RU2518689C2

Изобретение относится к способу и устройству для контроля герметичности нагнетательных и наблюдательных скважин при производстве нефти и газа и, в частности, к способу и устройству для точного контроля давления и/или температуры в одном или более кольцевых пространствах обсадной трубы скважины в естественном залегании без нарушения герметичности скважины или конструкции скважины.

Настоящее изобретение позволяет обеспечить улучшенный контроль и понимание любых изменений давления/температуры в кольцевом пространстве обсадной трубы скважины, поскольку предлагаемые способ и устройство позволяют различать, вызвано ли изменение в давлении и температуре флуктуациями технологического процесса или внешней среды или опасной утечкой давления из скважины. Таким образом, настоящее изобретение обеспечивает улучшенное управление рисками и безопасность скважины, а также окружающей среды, позволяя заранее предпринимать действия, необходимые для предотвращения опасных событий. Это может осуществляться на протяжении всего жизненного цикла скважины.

Контроль герметичности нефтяных и газовых скважин является актуальным вопросом в нефтяной промышленности. Эти вопросы возникают вследствие огромных денежных затрат, связанных с производством и эксплуатацией любых типов нефтяных скважин, а также по причине рисков, связанных с проблемами безопасности и защиты окружающей среды. В настоящем описании нефтяной скважиной называется скважина любого типа, пробуренная и оснащенная для разработки или хранения углеводородов из подземных образований. При этом нефтяные скважины классифицируются как комбинированные скважины, хранилища, наблюдательные, эксплуатационные или нагнетательные скважины.

Управление нефтяными скважинами и доступ к ним обеспечивается через устье скважины. Соответственно, обслуживающее оборудование устья скважины и его конфигурация в известном уровне техники предоставляют естественную целевую структуру для контроля и управления давлением в множестве кольцевых пространств, окружающих эксплуатационную трубу или скважину. Настоящее изобретение может быть применено к любым нефтяным скважинам, расположенным, например, на суше, на платформе или на морском дне. Однако для простоты и однозначного понимания настоящего изобретения оно описано на примере применения в стандартной нефтяной скважине со стандартным устьем.

Контроль герметичности скважины становится более важным и более сложным при все более активном использовании замкнутого или окружающего кольцевого пространства (т.е. кольцевого пространства А) эксплуатационной колонны или трубопровода для содействия в разработке скважины. Имеется в виду, что конструкция скважины такова, что кольцевое пространство А используют как трубопровод для подачи газа для искусственной системы подъема продукта из скважины. В таких приложениях ближайшее кольцевое пространство (кольцевое пространство А), окружающее эксплуатационную скважину, больше не выступает в роли барьера и/или конструктивного элемента защиты, как в традиционных или известных нефтяных скважинах. В настоящее время кольцевое пространство А интегрировано как составная часть и элемент технологического процесса системы разработки современных нефтяных скважин. Это, в свою очередь, вынуждает конструкторов скважин выносить "активный" барьер кольцевого пространства скважины на одну или более ступеней наружу от эксплуатационной колонны (например, в кольцевое пространство В или С и т.д.).

Использование кольцевых пространств нефтяных скважин в качестве активной составляющей системы технологического процесса, как описано выше, требует пересмотра вопросов безопасности и герметичности всей конструкции скважины. Ранее было относительно просто измерять и контролировать давление и температуру в ближайшем кольцевом пространстве нефтяных скважин, поскольку доступ к кольцевому пространству А мог быть получен через стенку корпуса устьевого оборудования или через подвеску колонны. Кольцевое пространство В, с другой стороны, является более сложным, поскольку оно физически заканчивается более глубоко внутри корпуса устьевого оборудования и доступ к нему перекрыт и надежно герметизирован подвеской соответствующей обсадной колонны. Фактически, в существующих конструкциях отсутствует простой или прямой доступ к внешним кольцевым пространствам (т.е. кольцевым пространствам В, С, D) без применения приспособлений, которые могут нарушить герметичность. Это может быть сделано с помощью прокалывания стенки "барьера" (т.е. корпуса устьевого оборудования, подвески обсадной колонны) для получения гидравлического доступа для контроля давления в свободном пространстве путем размещения известного устройства датчика температуры или давления.

Имеется множество патентов, относящихся к измерению давления в кольцевом пространстве обсадной колонны скважины. Одна из таких систем описана в документе US 6513596 B2. Описанная система является по существу иллюстративной и показывает систему контроля данных о скважине с помощью датчиков, размещенных во внешнем кольцевом пространстве конструкции обсадной колонны скважины. В системе используется неинтрузивный подход для измерения давления и других параметров внутри множества кольцевых пространств, позволяющий сохранить герметичность скважины. Система включает датчики, размещенные в кольцевом пространстве, которые взаимодействуют с системой опроса, расположенной снаружи или внутри корпуса устьевого оборудования. В документе подтверждается, что датчикам необходима энергия и связь для выполнения их функций, и перечислены альтернативные источники питания и способы связи без предоставления решения фактических задач, возникающих в реальном применении. Этот способ не рассматривается как уже примененный в какой-либо нефтяной скважине или в реальной эксплуатации.

Документ US 3974690 иллюстрирует способ и устройство для измерения давления в кольцевом пространстве скважины. Этот способ является механически сложным, поскольку включает подвижный элемент, функционирующий в режиме датчика перепада давления. Измеряющая сторона датчика открыта для измеряемой величины (т.е. давления в кольцевом пространстве), в то время как другая сторона датчика открыта для наддува камеры давления. Подвижный элемент перемещается и останавливается, когда давление камеры равно давлению в кольцевом пространстве. В способе используют электрический кабель управления для возбуждения и считывания сигналов положения упомянутого элемента. Кабель управления подвешивают с помощью специальных средств в центре колонны и оттуда выводят из скважины.

Во-первых, подвижные датчики нежелательны для применения в нефтяных скважинах, поскольку они могут сорваться и привести к повреждениям в скважине. Во-вторых, кабель, выходящий из эксплуатационной колонны скважины не способствует сохранению требуемой герметичности конструкции и безопасности скважины. Основываясь на этом факте, сложно представить, как такая система может использоваться на практике для постоянного контроля герметичности нефтяной скважины, поэтому подобную систему можно считать лишь предварительным или временным средством.

Третий патент иллюстрирует подход с использованием гидравлической связи или средств доступа. В документе US 4887672 описана система, в которой применяют гидравлические муфты, просверленные изнутри отверстия и соответствующие каналы нагнетания для контроля герметичности скважины. Ориентация муфт обязательно должна быть выполнена перед монтажом устья, при этом муфты могут быть легко повреждены. Кроме того, каждый канал нагнетания подвержен утечкам и увеличивает общие риски для безопасности скважины.

Еще один соответствующий подход рассмотрен в документе ЕР 1662673 А1. Описанный в нем способ включает магнитное насыщение обсадной колонны скважины или трубопровода для создания "окна" для локального управления магнитным полем переменного тока для возбуждения датчика, расположенного снаружи обсадной колонны. Описанный принцип представляется нереальным вследствие относительно высокого энергопотребления, необходимого для магнитного насыщения обсадной колонны скважины. Кроме того, способ потребует равномерной скорости тока в насыщаемом материале, что, в свою очередь, потребует оптимального контакта (равномерно распределенное контактное сопротивление по всей открытой области) применяемых электродов. Вследствие сочетания открытых электродов и высоких токов подобные системы подвержены быстрому износу в результате гальванических реакций (окисление/коррозия) внутри герметичной системы скважины. Таким образом, способ неприменим для постоянного контроля давления.

В одном из аспектов настоящего изобретения предлагается способ и устройство для контроля давления в множестве кольцевых пространств обсадной колонны скважины. В определенных приложениях необходим контроль давления во внешнем кольцевом пространстве между обсадными колоннами скважины для гарантии ее безопасной эксплуатации. Традиционно, контроль осуществляют только в кольцевом пространстве между эксплуатационной колонной и внутренней колонной (эксплуатационной обсадной колонной). В некоторых приложениях современных способов разработки скважины используют традиционное кольцевое пространство (кольцевое пространство А) в качестве функционального элемента системы технологического процесса. Соответственно, возникают новые законные требования и необходимость переноса традиционного барьера эксплуатационной обсадной колонны и герметичности скважины наружу. В настоящем изобретении описан неинтрузивный способ, позволяющий сохранить герметичность скважины и в то же время способствующий повышению ее безопасности.

Второй аспект настоящего изобретения заключается в том, что система управления давлением способна предсказывать будущий профиль давления/температуры кольцевого пространства как функцию изменения нагрузки. Как правило, изменения нагрузки вызваны флуктуациями технологического процесса или окружающей среды, что, в свою очередь, вызывает изменения давления внутри герметичной системы скважины. Подобные изменения по своей природе не опасны, и способность их распознавать улучшает оценку безопасности скважины. В результате получение данных о технологическом процессе и окружающей среде в реальном времени в сочетании с измерениями в месте залегания составляют важное преимущество перед известным уровнем техники в том отношении, что настоящее изобретение позволяет системе управления выявлять и реагировать на потенциальные проблемы перед их возникновением. Кроме того, может быть сформирован удаленный узел датчиков из множества различных датчиков оценки, которые важны для оценки состояния и герметичности множества систем скважин, находящихся под давлением.

В соответствии с одним из аспектов настоящего изобретения предлагается беспроводной блок датчика (wireless sensor unit, WSU). Блок WSU представляет собой неинтрузивную систему постоянного контроля герметичности скважины. Особенностью блока WSU является то, что он содержит узел датчиков (sensor package, SP), постоянно контролирующих давление и температуру без нарушения барьеров герметичности кольцевого пространства обсадной колонны скважины. Узел SP зависит от конкретного приложения и состоит из набора высокоточных датчиков давления и температуры, выполненных на кварцевых кристаллах, при этом он формирует выходные данные о давлении, температуре, а также о градиентах (т.е. изменении) температуры. В свою очередь, узел SP связан с электромагнитным приемопередатчиком (Electromagnetic Transceiver, ET), который включает электрические схемы для двунаправленной связи и сбора энергии (power harvesting). Узел SP и электромагнитный приемопередатчик ET установлены или интегрированы во внешний периметр секции немагнитной обсадной колонны (Non-Magnetic Casing Section, NMCS), являющейся частью конструкции обсадной колонны скважины (барьера).

Другим аспектом настоящего изобретения является блок питания датчика (Sensor Energizer Unit, SEU), который обычно составляет часть трубы оснащенной скважины или крепится к ней. Блок SEU сконфигурирован для размещения в нем беспроводного блока датчика. Блок SEU состоит из трех основных элементов. Первым и главным элементом блока SEU является электромагнитная обмотка (Electromagnetic Armature, ЕА), вторым - регулируемый сердечник (Adjustable Mandrel, AM), и третьим - кабельный адаптер (Cable Adaptor, CA). Электромагнитная обмотка обеспечивает сочетание источника питания и линии связи для блока WSU. Главная передача электромагнитной обмотки осуществляется с помощью низкочастотной индукции или электромагнитного поля, которое собирается и преобразуется блоком WSU в электрическую энергию. Для обеспечения оптимальной эффективности противоположно блоку WSU к регулируемому сердечнику подключена электромагнитная обмотка, улучшающая способность «точной настройки» для оптимизации эффективности установки блока WSU посредством вертикальной регулировки. К электромагнитной обмотке также присоединен кабельный адаптер (СА), соединенный с кабелем управления, идущим снаружи скважины. Кабель управления закреплен на трубе оснащенной скважины стандартными кабельными зажимами и выходит из скважины через ее устье в соответствии с известным уровнем техники. Как правило, кабель управления представляет собой одножильный трубопроводный электрический кабель (Tubing Electric Cable, ТЕС), предоставляющий питание для блока SEU, а также связь между упомянутым блоком SEU и средствами контроля (т.е. средствами, расположенными снаружи скважины).

Электромагнитная обмотка может крепиться к регулируемому сердечнику (AM), что обеспечивает свободу ее вертикальной регулировки/позиционирования относительно блока WSU. Свобода вертикальной регулировки после установки на эксплуатационной колонне позволяет операторам, задействованным в ее позиционировании в точном положении, соседнем с блоком WSU в скважине, без сложности «разнесения» использовать трубу оснащенной скважины или эксплуатационную колонну внутри скважины. Таким образом, регулируемый сердечник имеет двойное назначение: во-первых, обеспечивает держатель, несущее и/или защитное приспособление для электромагнитной обмотки, а во-вторых, обеспечивает вертикальную регулировку, чтобы два основных элемента настоящего изобретения (т.е. блоки WSU и SEU) имели правильное расположение относительно друг друга.

В зависимости от необходимой степени оценки рисков блок SEU может также включать узел датчиков (SP), аналогичный узлу датчиков блока WSU, для улучшения более сложной оценки герметичности системы, находящейся под давлением.

В соответствии с одним из аспектов настоящего изобретения предлагается устройство для контроля давления снаружи обсадной колонны ствола скважины, включающее: беспроводной блок датчика (WSU), расположенный снаружи секции немагнитной обсадной колонны, при этом упомянутый блок WSU включает устройство датчика для измерения давления и/или температуры окружающей среды, причем блок WSU может быть установлен или позиционирован на любой высоте ствола скважины, а питание блока WSU осуществляется путем сбора энергии, где частота индукционного сигнала лежит в диапазоне 10-1000 Гц для глубокого проникновения через немагнитную обсадную колонну; внутренний блок питания датчика (SEU), размещенный внутри обсадной колонны ствола скважины и используемый для питания блока WSU и связи с ним, при этом блок SEU устанавливают на буровую трубу или конструкцию оснащенной скважины с помощью трубы с резьбой, позволяющей регулировать его положение по высоте, причем блок SEU преобразует мощность питания постоянного тока, подаваемого по кабелю с поверхности, в переменное электромагнитное поле, обеспечивающее питание для блока WSU, расположенного снаружи обсадной колонны; при этом блоки SEU и WSU используют электромагнитную модуляцию для обеспечения обмена данными между этими двумя компонентами.

Блок SEU может быть размещен на высоте, равной высоте расположения внешнего блока WSU. Кроме того, датчик может крепиться вблизи устья скважины или древовидной структуры ствола скважины. В блоке WSU может иметься два или более датчиков, при этом все датчики блока WSU могут быть размещены на внешней стороне обсадной колонны ствола скважины без нарушения герметичности скважины, находящейся под давлением.

Датчики давления предпочтительно измеряют один или более параметров кольцевого пространства, которое им доступно. Датчики могут ответвляться от блока WSU и подключаться к общему жгуту электрических проводов, закрепленному на внешней стороне обсадной колонны. Жгут проводов может представлять собой одножильный или многожильный скважинный кабель (ТЕС).

Устройство может также включать одну или более обмоток сбора энергии, распределенных по заданной секции немагнитной обсадной колонны, при этом блок WSU может включать вторичный источник энергии или подключаться к нему. Этот источник может представлять собой аккумулятор или скважинный генератор.

Кроме того, блок SEU может опционально включать один или более датчиков для измерения параметров внутри обсадной колонны ствола скважины или трубы, на которой он закреплен. Эти датчики могут быть интегральной частью блока SEU или ответвляться от блока SEU и могут подключаться к общему жгуту электрических проводов или могут подключаться в виде сочетания интегрального датчика и ответвленных датчиков. Упомянутый жгут проводов может представлять собой одножильный или многожильный скважинный кабель (ТЕС).

Датчики опционально измеряют одну или более следующих характеристик: давление, температуру, объем потока, скорость потока, направление потока, мутность, состав, уровень нефти, уровень раздела фаз вода-нефть, плотность, соленость, радиоактивность, замещения, вибрации, показатель рН, сопротивление, содержание песка, теплопроводность или любую их комбинацию. Они могут измерять также одну или более следующих структурных характеристик обсадной колонны ствола скважины или трубы: сотрясения, вибрации, угол наклона, магнитные свойства, электрические свойства, положение бурового устройства или ориентацию устройства иного типа, а также характеристики напряжения и натяжения или любую их комбинацию. Они могут также измерять одну или более характеристик кольцевого пространства или необсаженной скважины на внешней стороне ее ствола, при этом характеристики могут быть выбраны из следующего: давление, температура, сопротивление, плотность, показатель рН, электромагнитные и/или электрические поля, радиоактивность, соленость, звук, скорость звука, теплопроводность, а также другие химические или физические характеристики.

Устройство может также включать средства для получения отклика окружающей среды, которые могут быть выбраны из следующего: источник магнитного поля, источник электрического поля, звуковые волны, давление, температура, волны поперечного усилия, а также другие исполнительные элементы или исполнительные части скважинного управления технологическим процессом, при этом исполнительный элемент или исполнительную часть используют по отношению к пласту для осуществления любых перечисленных выше измерений.

Устройство может включать также одно или более из следующего: подавление шума в смещении параметров, вызванном технологическим процессом скважины или окружающей средой; предсказание и коррекция измерений вследствие градиентов, наводимых окружающей средой или системой технологического процесса скважины, для обеспечения корректного контроля в реальном времени герметичности скважины, находящейся под давлением, и ее состояния.

В настоящем изобретении также предлагается способ контроля давления снаружи обсадной колонны ствола скважины, включающий:

установку беспроводного блока датчика (WSU), включающего датчик, на внешней стороне секции немагнитной обсадной колонны ствола скважины;

установку внутреннего блока питания датчика (SEU) внутри обсадной колонны ствола скважины на высоте, равной высоте размещения блока WSU, расположенного снаружи ствола скважины, при этом блок SEU используют для питания блока WSU и связи с ним;

питание блока WSU с помощью сбора энергии, при этом частота индукционного сигнала лежит в диапазоне 10-1000 Гц для глубокого проникновения через немагнитную обсадную колонну;

преобразование мощности питания постоянного тока, подаваемого в блок SEU по кабелю с поверхности, в переменное электромагнитное поле, которое обеспечивает питание для блока WSU, расположенного снаружи обсадной колонны;

использование электромагнитной модуляции для обеспечения обмена данными между блоками SEU и WSU.

Опциональные и предпочтительные технические признаки устройства в соответствии с предыдущим описанием применимы к способу настоящего изобретения и будут описаны более подробно ниже.

Описанные выше и другие технические признаки, а также преимущества настоящего изобретения будут понятны специалистам из подробного описания и чертежей. Обратимся к чертежам, на которых одинаковые элементы обозначены одинаковыми цифрами.

На фиг.1 представлено схематическое изображение системы управления давлением в кольцевом пространстве обсадной колонны скважины в соответствии с настоящим изобретением для использования в управлении и оценке рисков в множестве приложений, связанных с нефтяными скважинами.

На фиг.2 показано увеличенное схематическое изображение одного из аспектов, показанных на фиг.1, иллюстрирующее беспроводной блок датчика (WSU).

На фиг.3 показано увеличенное схематическое изображение другого аспекта, показанного на фиг.1, иллюстрирующее блок питания датчика (SEU).

На фиг.4 показана упрощенная электрическая схема системы управления давлением в соответствии с настоящим изобретением.

На фиг.5 представлено схематическое изображение, аналогичное фиг.1, иллюстрирующее применение множества датчиков на каждой стороне обсадной колонны ствола скважины.

На фиг.6 представлена схема, иллюстрирующая сеть датчиков, ответвляющихся от одного узла.

Настоящее изобретение относится к системе контроля герметичности кольцевого пространства обсадной колонны скважины, находящейся под давлением. Контролируемое кольцевое пространство обычно представляет собой барьер, ближайший к эксплуатационной системе скважины и служащий для того, чтобы избежать утечек и повысить безопасность эксплуатации. В частности, беспроводной блок датчика (WSU) 1 в настоящем изобретении является частью конструкции обсадной колонны скважины основного эксплуатационного барьера 2 скважины. Секция 20 обсадной колонны (см. фиг.2) блока WSU 1 выполнена из немагнитного материала и содержит узел 10 датчиков, а также множество электромагнитных приемопередатчиков (11a-f). Для целей настоящего изобретения узел датчиков сконфигурирован для измерения и контроля параметров кольцевого пространства 3 снаружи основного барьера эксплуатационной системы скважины, как показано на фиг.1.

Пространство 3, показанное на фиг.1, часто также называют кольцевым пространством В, а блок WSU 1 обычно размещают вблизи и снизу устьевой структуры или корпуса 4. Устьевая структура показана цифрой 5, обозначающей грунт, через который была пробурена скважина, и цифрой 6, обозначающей ствол скважины. Блок WSU 1 получает питание беспроводным способом с помощью блока 9 питания датчика (SEU) посредством электромагнитных средств, что в области электротехники также называют «сбором энергии» (обозначено цифрой 100 на фиг.4). Блок WSU оснащен схемами управления, которые обеспечивают двунаправленную связь с блоком SEU 9. Упомянутая связь также осуществляется посредством электромагнитных средств.

На фиг.2 более подробно показаны основные элементы одного из компонентов настоящего изобретения, которые определяют конфигурацию беспроводного блока 1 датчика. Блок WSU 1 состоит из узла датчиков (SP) 10, электромагнитного приемопередатчика (ЕТ) 11a-f и секции 20 немагнитной обсадной колонны (NMCS). Более подробная функциональная схема и схема соединений блока WSU 1 показана в правой части фиг.4 пунктирной линией.

Снова обратимся к фиг.1. Вторым компонентом настоящего изобретения является блок 9 питания датчика (SEU). Блок SEU 9 показан более подробно на фиг.3 и обычно устанавливается на сердечник 91 и крепится к секции 94 эксплуатационной колонны. В данном примере эксплуатационная колонна 94 имеет внешнюю резьбу 93, однако она может иметь и внутреннюю резьбу. Резьба 93 позволяет регулировать положение блока SEU 9 по высоте так, чтобы высота блока SEU 9 в скважине точно соответствовала высоте блока WSU 1. Это гарантирует корректную связь, а также получение оптимальной эффективности сбора энергии (обозначение 100 на фиг.4).

Питание и связь для блока SEU обеспечивают посредством трубопроводного электрического кабеля (ТЕС) 97, который закреплен на эксплуатационной колонне 7, и выводов 72 и 73, обычно выходящих через держатель 71 колонны (см. фиг.1). Блок SEU 9 может также содержать узел 95 датчиков, который, в принципе, может быть таким же, как узел 10 датчиков блока WSU 1, но может быть сконфигурирован для считывания параметров внутреннего кольцевого пространства 8. Как правило, внутреннее кольцевое пространство 8 специалисты называют кольцевым пространством А.

На фиг.3 и 4 питание к блоку SEU 9 подают с установленного на буровой площадке блока 101 скважинного интерфейса (Downhole Interface Unit, DIU) через кабель 97 ТЕС. Кабель ТЕС 97 обеспечивает связь по направлению в скважину и из нее между блоками DIU 101 и SEU 9. Как правило, эта связь осуществляется посредством сигналов, наложенных на питание, поскольку кабель ТЕС 97 является одножильным кабелем. Кабель ТЕС 97 оканчивается в блоке SEU 9 в кабельном адаптере 96. Питание направляют внутри через сердечник 91 и подают на электромагнитную обмотку (ЕА) 92. Подробная иллюстрация внутренних электронных функциональных элементов и разводки приведена на фиг.4 слева пунктирной линией.

Также при необходимости узел 95 датчиков (SP) может быть сконфигурирован для обеспечения большего количества данных для оценки герметичности контролируемого кольцевого пространства под давлением. Узел 95 датчиков может быть аналогичен узлу 10 датчиков блока WSU, однако, альтернативно, может быть датчиком любого типа, способным обеспечивать данные для улучшения безопасности и оценки рисков конкретной скважины. Например, датчик 95 может измерять одну или более следующих характеристик: давление, температуру, объем потока, скорость потока, направление потока, мутность, состав, уровень нефти, уровень раздела фаз вода-нефть, плотность, соленость, радиоактивность, замещения, вибрации, показатель рН, сопротивление, содержание песка, теплопроводность, а также другие химические и физические характеристики.

Как было отмечено выше, электромагнитная обмотка 92 и узел 95 датчиков могут быть закреплены на сердечнике 91. Сердечник 91 служит одновременно как держатель и как защита упомянутых элементов, а также обеспечивает возможность регулировки для соответствия вертикальному положению или высоте блока WSU 1. Диапазон регулировки согласно настоящему изобретению обычно составляет 0-50 см, например 10-40 см или 25-35 см, но может быть расширен или сужен в зависимости от требований обеспечения свободы корректного пространственного разнесения для установки. Сердечник 91 и эксплуатационная колонна 94 могут быть выполнены из магнитного материала.

На фиг.4 показана упрощенная электронная схема согласно настоящему изобретению для пояснения специалистам внутренней архитектуры и функционирования системы. В соответствии со схемой один или более блоков SEU 9 могут быть соединены с кабелем 97 управления. На данном чертеже это проиллюстрировано с помощью дополнительного кабеля ТЕС 98, ведущего к дополнительным блокам SEU, обозначенным цифрой 28.

В многокомпонентной системе (т.е. с двумя или более блоками SEU 9) все блоки SEU соединены с кабелем 97 в параллельной конфигурации. Вследствие относительно высокого энергопотребления, система работает таким образом, что в каждый момент времени активен только один блок SEU.

Активное состояние блока SEU адресуют во время начального запуска посредством команды, выдаваемой блоком DIU 101 на буровой площадке. При подаче питания блок DIU активно адресует один из блоков SEU 9 по линии и делает его активным узлом системы. Для переключения на другой блок SEU, блок DIU просто снимает питание с линии для сброса или возобновления работы. При следующей подаче питания может быть адресован другой блок SEU. При использовании подобного режима работы в каждый момент времени питание подают только на один блок SEU, при этом система способна размещать большое количество блоков SEU на линии без значительного падения напряжения в кабеле из-за высокой нагрузки.

Сбор 100 энергии достигают путем корректного вертикального выравнивания блока SEU 9 относительно блока WSU 1. Как отмечалось выше, эта регулировка обеспечивается посредством регулируемого сердечника 91. Вторым техническим признаком настоящего изобретения является использование секции 20 немагнитной обсадной колонны, которая обеспечивает глубокое проникновение низкочастотного (50-1000 Гц) электромагнитного поля, наводимого электромагнитной обмоткой 92 (ЕА), и соответственно делает его «видимым» для электромагнитного приемопередатчика (ЕТ) 11 блока WSU 1. Эффективность передачи энергии низкая вследствие неидеальных условий индуктивной связи, однако испытания показывают, что достижим коэффициент около 20:1, который достаточен для работы узла датчиков с низким потреблением в соответствии с настоящим изобретением.

Рассмотрим более подробно фиг.4, на которой блок SEU 9 состоит из источника 21 питания, который обеспечивает регулируемый постоянный ток для электронных функциональных компонентов блока. Блок SEU контролируется внутренним контроллером 25. После вызова перехода в активное состояние контроллер интерпретирует адрес и, если он адресован, включает внутренний генератор 27 прерывистой модуляции (modulating chopper oscillator, MCO). Генератор МСО преобразует электрическую энергию в переменное магнитное поле посредством электромагнитной обмотки 92. Наводимое поле имеет частоту, позволяющую электромагнитным волнам, которые затем собираются электромагнитным приемопередатчиком (ЕТ) 11a-f блока WSU 1, распространяться вглубь окружающей структуры. Генератор МСО также обеспечивает модуляцию данных 22, передаваемых между блоками SEU и WSU.

Блок SEU имеет также модем 23. Основным назначением модема является считывание и передача данных из/по линии 97 питания. Однако данные 22 на входе и на выходе блока SEU буферизуются и интерпретируются внутренним контроллером 25. Кварцевые датчики (например, для определения давления 29 и температуры 30) рассматриваемого устройства управляются соответствующими генераторами 26, при этом частота на выходе каждого кварцевого датчика представляет собой функцию измеряемой величины. Частоту датчика измеряют с помощью сигнального процессора 24 и непрерывно подают во входной буфер контроллера 25.

Что касается блока WSU 1, его внутренние электронные функциональные элементы эквивалентны элементам блока SEU 9, за исключением выпрямляющего моста 31. Выпрямляющий мост преобразует переменный ток, наводимый локальным электромагнитным полем, в постоянное напряжение/ток для внутреннего питания блока WSU 1. Используемый электромагнитный принцип специалисты называют сбором 100 энергии. Для целей настоящего изобретения блок WSU 1 снабжен высокоточными датчиками 29 давления и 30 температуры. В принципе, блок WSU 1 может включать узел датчиков, который может содержать датчики любого типа, для измерения множества измеряемых параметров для улучшения оценки рисков в отношении герметичности системы скважины.

На фиг.1-4 показана система, включающая либо одиночный датчик внутри блока SEU, либо два датчика - один в блоке SEU, а второй в блоке WSU.

На фиг.5 показана система, приведенная на фиг.1 и расширенная для включения большего количества датчиков на каждой стороне обсадной колонны ствола скважины. Для аналогичных функциональных элементов использованы те же обозначения, что и на фиг.1-4. На внутренней стороне ответвляются, например, датчики 95а, 95b и 95с от блока SEU, а на внешней стороне ответвляются, например, дополнительные датчики 10а, 10b, 10с от блока WSU.

На фиг.6 представлена соответствующая схема, иллюстрирующая множество датчиков, объединенных в сеть и управляемых единственным узлом, и иллюстрирующая каскадирование датчиков на обеих сторонах обсадной колонны ствола скважины. На фиг.6 показаны датчики, измеряющие параметры необсаженной скважины, например давление 29, температуру 30, сопротивление 32 и уровень 33 раздела фаз нефть/вода.

Похожие патенты RU2518689C2

название год авторы номер документа
СПОСОБ И УСТРОЙСТВО ДЛЯ СКВАЖИННЫХ ИЗМЕРЕНИЙ 2010
  • Годагер Ойвинд
RU2513073C2
ЗАТРУБНЫЙ БАРЬЕР ДЛЯ ОСНАЩЕНИЯ СКВАЖИН С ИНДУКТИВНОЙ СИСТЕМОЙ 2016
  • Васкис Рикарду Ревис
  • Хейзел Пол
RU2738918C2
НЕФТЯНАЯ СКВАЖИНА И СПОСОБ РАБОТЫ СТВОЛА НЕФТЯНОЙ СКВАЖИНЫ 2001
  • Бернетт Роберт Рекс
  • Карл Фредерик Гордон Мл.
  • Севедж Вилльям Маунтджой
  • Вайнгар Харолд Дж.
RU2273727C2
СИСТЕМА ГИДРАВЛИЧЕСКОГО ПРИВОДА, НЕФТЯНАЯ СКВАЖИНА И СПОСОБ УПРАВЛЕНИЯ СКВАЖИННЫМ УСТРОЙСТВОМ 2001
  • Вайнгар Харолд Дж.
  • Бернетт Роберт Рекс
  • Севедж Вилльям Маунтджой
  • Карл Фредерик Гордон Мл.
RU2260676C2
Индукционный скважинный нагреватель 2019
  • Булдаков Иван Дмитриевич
  • Исаков Андрей Владимирович
RU2721549C1
АППАРАТ ДЛЯ ПЕРЕДАЧИ МОЩНОСТИ, СПОСОБ ВЫРАБОТКИ СИГНАЛА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ВНУТРИ ТРУБНОЙ КОНСТРУКЦИИ И НЕФТЯНАЯ СКВАЖИНА 2001
  • Вайнгар Харолд Дж.
  • Бернетт Роберт Рекс
  • Севедж Вилльям Маунтджой
  • Карл Фредерик Гордон Мл.
  • Херш Джон Мишель
RU2262598C2
СПОСОБЫ И УСТРОЙСТВА ДЛЯ ОСУЩЕСТВЛЕНИЯ СВЯЗИ СКВОЗЬ ОБСАДНУЮ КОЛОННУ 2005
  • Шузену Кристиан
  • Нуаз Вероник
RU2405932C2
СПОСОБ И УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ РОДА МАТЕРИАЛА В ПОЛОСТИ МЕЖДУ ВНУТРЕННЕЙ МЕТАЛЛИЧЕСКОЙ СТЕНКОЙ И НАРУЖНОЙ МЕТАЛЛИЧЕСКОЙ СТЕНКОЙ 2011
  • Кривошеев Сергей Иванович
  • Свечников Евгений Львович
  • Жабко Григорий Петрович
  • Белов Андрей Александрович
RU2548300C2
СПОСОБ ОДНОВРЕМЕННО-РАЗДЕЛЬНОЙ ИЛИ ПООЧЕРЕДНОЙ ДОБЫЧИ ПЛАСТОВОГО ФЛЮИДА ИЗ СКВАЖИН МНОГОПЛАСТОВЫХ МЕСТОРОЖДЕНИЙ С ПРЕДВАРИТЕЛЬНОЙ УСТАНОВКОЙ ПАКЕРОВ 2014
  • Малыхин Игорь Александрович
RU2552555C1
СПОСОБ ОТБОРА ГЛУБИННЫХ ПРОБ С РЕГИСТРАЦИЕЙ ТЕМПЕРАТУРЫ, ДАВЛЕНИЯ И ГЛУБИНЫ ПО СТВОЛУ СКВАЖИНЫ И В МОМЕНТ ЗАПОЛНЕНИЯ ПРОБОПРИЕМНОЙ КАМЕРЫ СКВАЖИННЫМ ФЛЮИДОМ ИЛИ ГАЗОМ И УСТРОЙСТВО ПО ЕГО ОСУЩЕСТВЛЕНИЮ 2004
  • Павленко Григорий Антонович
  • Павлов Андрей Александрович
  • Павленко Игорь Григорьевич
RU2280160C2

Иллюстрации к изобретению RU 2 518 689 C2

Реферат патента 2014 года СИСТЕМА УПРАВЛЕНИЯ ДАВЛЕНИЕМ В КОЛЬЦЕВОМ ПРОСТРАНСТВЕ ОБСАДНОЙ КОЛОННЫ СКВАЖИНЫ

Изобретение относится к способу и устройству для контроля давления и/или температуры в одном или более кольцевых пространствах обсадной трубы скважины в естественном залегании без нарушения герметичности скважины или конструкции скважины. Техническим результатом является точный контроль давления и/или температуры в одном или более кольцевых пространствах обсадной трубы скважины. Устройство включает беспроводной блок датчика (WSU), расположенный снаружи секции немагнитной обсадной колонны и включающий датчик для измерения давления и/или температуры окружающей среды, при этом блок WSU может быть установлен или позиционирован на любой высоте ствола скважины, а питание блока WSU осуществляется с помощью сбора энергии. Причем частота индукционного сигнала лежит в диапазоне 10-1000 Гц для глубокого проникновения через немагнитную обсадную колонну. Внутренний блок питания датчика (SEU) размещен внутри обсадной колонны ствола скважины и используется для питания блока WSU и связи с ним, при этом блок SEU закреплен на буровой трубе или на конструкции оснащенной скважины с помощью трубы, имеющей резьбу, которая позволяет регулировать его положение по высоте, причем блок SEU преобразует мощность питания постоянного тока, подаваемого по кабелю с поверхности, в переменное электромагнитное поле, обеспечивающее питание для блока WSU, расположенного снаружи обсадной колонны. При этом блоки SEU и WSU используют электромагнитную модуляцию для обеспечения обмена данными между этими двумя компонентами. 2 н. и 33 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 518 689 C2

1. Устройство для контроля давления снаружи обсадной колонны (2) ствола скважины, включающее
беспроводной блок датчика (WSU) (1), расположенный снаружи секции (20) немагнитной обсадной колонны и включающий датчик (10) для измерения давления и/или температуры окружающей среды, при этом блок WSU (1) может быть установлен или позиционирован на любой высоте ствола (6) скважины, а питание блока WSU (1) осуществляется с помощью сбора (100) энергии, причем частота индукционного сигнала лежит в диапазоне 10-1000 Гц для глубокого проникновения через немагнитную обсадную колонну (20);
внутренний блок питания датчика (SEU) (9), размещенный внутри обсадной колонны (2) ствола скважины и используемый для питания блока WSU (1) и связи (100) с ним, при этом блок SEU (9) закреплен на буровой трубе или на конструкции оснащенной скважины с помощью трубы (7), имеющей резьбу (93), которая позволяет регулировать его положение по высоте, причем блок SEU (9) преобразует мощность питания постоянного тока, подаваемого по кабелю с поверхности, в переменное электромагнитное поле (100), обеспечивающее питание для блока WSU (1), расположенного снаружи обсадной колонны (2);
при этом блоки SEU (9) и WSU (1) используют электромагнитную модуляцию для обеспечения обмена данными между этими двумя компонентами.

2. Устройство по п.1, в котором блок SEU (9) сконфигурирован так, чтобы быть расположенным на высоте, равной высоте расположения внешнего блока WSU (1).

3. Устройство по п.1 или 2, в котором датчик (10) установлен вблизи устья скважины или древовидной структуры ствола скважины.

4. Устройство по п.1 или 2, в котором имеются два или более датчиков (10) в блоке WSU (1).

5. Устройство по п.4, в котором все датчики (10а, b, с) блока WCU (10) расположены на внешней стороне обсадной колонны ствола скважины без нарушения герметичности скважины, находящейся под давлением.

6. Устройство по п.1 или 2, в котором датчики давления (10а, b, с) измеряют один или более параметров кольцевого пространства (3, 8), которое им доступно.

7. Устройство по п.1 или 2, в котором датчики (10) ответвляются от блока WSU (1) и подключены к общему жгуту (97) электрических проводов, закрепленному на внешней стороне обсадной колонны (2).

8. Устройство по п.7, в котором жгут (97) проводов представляет собой одножильный или многожильный скважинный кабель (ТЕС).

9. Устройство по п.1 или 2, включающее одну или более обмоток (11a-f) сбора энергии, распределенных по заданной секции немагнитной обсадной колонны (2).

10. Устройство по п.1 или 2, в котором блок WSU (1) включает вторичный источник энергии или подключен к нему.

11. Устройство по п.10, в котором упомянутый вторичный источник энергии выбран из следующего: аккумулятор или скважинный генератор.

12. Устройство по п.1 или 2, в котором блок SEU (9) включает один или более датчиков (95) для измерения параметров внутри обсадной колонны (2) ствола скважины или трубы (7), на которой он закреплен.

13. Устройство по п.12, в котором датчики (95) являются интегральной частью блока SEU (9) или ответвляются от блока SEU (9) и подключены к общему жгуту (97) электрических проводов или представляют собой комбинацию интегрального датчика и ответвленных датчиков.

14. Устройство по п.13, в котором упомянутый жгут (97) проводов представляет собой одножильный или многожильный скважинный кабель (ТЕС).

15. Устройство по п.1 или 2, в котором датчики измеряют одну или более из следующих характеристик: давление, температуру, объем потока, скорость потока, направление потока, мутность, состав, уровень нефти, уровень раздела фаз вода-нефть, плотность, соленость, радиоактивность, замещения, вибрации, показатель рН, сопротивление, содержание песка, теплопроводность или любую их комбинацию.

16. Устройство по п.1 или 2, в котором датчики измеряют одну или более из следующих структурных характеристик обсадной колонны ствола скважины или трубы: сотрясения, вибрации, угол наклона скважины, магнитные свойства, электрические свойства, положение бурового устройства или ориентацию устройства иного типа, а также характеристики напряжения и натяжения или любую их комбинацию.

17. Устройство по п.1 или 2, в котором датчик измеряет одну или более из характеристик кольцевого пространства или необсаженной скважины на внешней стороне ствола скважины, при этом характеристики могут быть выбраны из следующего: давление, температура, сопротивление, плотность, показатель рН, электромагнитные и/или электрические поля, радиоактивность, соленость, звук, скорость звука, теплопроводность, а также другие химические или физические характеристики.

18. Устройство по п.1 или 2, включающее средства для получения отклика от окружающей среды, причем эти средства могут быть выбраны из следующего: источник магнитного поля, источник электрического поля, звуковые волны, давление, температура, волны поперечного усилия и другие исполнительные элементы или исполнительные части скважинного управления технологическим процессом, при этом исполнительный элемент или исполнительная часть используется по отношению к пласту для поддержки любых перечисленных выше измерений.

19. Устройство по п.1 или 2, включающее одно или более из следующего: подавление шума в смещении параметров, создаваемом технологическим процессом скважины или окружающей средой; предсказание и коррекция измерений вследствие градиентов, наводимых окружающей средой или системой технологического процесса скважины, для обеспечения корректного контроля в реальном времени герметичности скважины и ее состояния.

20. Способ контроля давления снаружи обсадной колонны (2) ствола скважины, включающий:
установку беспроводного блока (1) датчика (WSU), включающего датчик (10), на внешней стороне секции немагнитной обсадной колонны (20) ствола скважины;
установку внутреннего блока (9) питания датчика (SEU) внутри обсадной колонны (2) ствола скважины на высоте, равной высоте расположения блока WSU (1), размещенного снаружи обсадной колонны ствола скважины, при этом блок SEU (9) используют для питания блока WSU (1) и связи (100) с ним;
питание блока WSU (1) с помощью сбора (100) энергии, при этом частота индукционного сигнала лежит в диапазоне 10-1000 Гц для глубокого проникновения через немагнитную обсадную колонну (20);
преобразование мощности питания постоянного тока, подаваемого к блоку SEU (9) по кабелю (97) с поверхности, в переменное электромагнитное поле (100), обеспечивающее питание для блока WSU (1), расположенного снаружи обсадной колонны (2);
использование электромагнитной модуляции для обеспечения обмена данными между блоками SEU (9) и WSU (1).

21. Способ по п.20, в котором все датчики (10а, b, с) блока WCU (1) закрепляют для постоянного размещения на внешней стороне обсадной колонны ствола скважины без нарушения герметичности скважины или барьера.

22. Способ по п.21, в котором один или более датчиков давления (10а, b, с) измеряют один или более параметров кольцевого пространства, которое им доступно.

23. Способ по любому из пп.20-22, в котором датчики (10) не являются частью блока WSU (1), а ответвляются и подключены к общему жгуту (97) электрических проводов, закрепленному на внешней стороне обсадной колонны (2).

24. Способ по п.23, в котором жгут (97) проводов представляет собой одножильный или многожильный скважинный кабель (ТЕС).

25. Способ по п.24, в котором датчики (10а, b, с) блока WSU (1) являются частью герметичной системы ствола скважины (струйной системы) и направлены на внешнюю или наружную сторону системы обсадной колонны ствола скважины или зацементированы на внешней или наружной стороне обсадной колонны скважины.

26. Способ по любому из пп.20-22, в котором
одна или более обмоток (11a-f) сбора энергии распределены по заданной секции немагнитной обсадной колонны (2);
упомянутая секция или полоса (20) с обмотками немагнитной обсадной колонны обеспечивает необходимый допуск на оснащение скважины или разнесение для системы при спуске буровой трубы (подвески колонны) в устье или дерево скважины.

27. Способ по любому из пп.20-22, в котором блок WSU (1) включает вторичный источник энергии или подключен к нему.

28. Способ по п.27, в котором упомянутый вторичный источник энергии выбирают из аккумулятора или скважинного генератора для обеспечения дополнительной мощности, необходимой для поддержки сбора энергии.

29. Способ по любому из пп.20-22, в котором блок SEU (9) имеет по меньшей мере один датчик (95) для измерения параметров внутри обсадной колонны (2) ствола скважины или трубы (7), на которой он закреплен.

30. Способ по п.29, в котором датчики (95) являются интегральной частью блока SEU (9) или ответвляются от блока SEU (9) и подключены к общему жгуту (97) электрических проводов или представляют собой комбинацию интегрального датчика и ответвленных датчиков.

31. Способ по любому из пп.20-22, в котором датчики измеряют одну или более из следующих характеристик: давление, температуру, объем потока, скорость потока, направление потока, мутность, состав, уровень нефти, уровень раздела фаз вода-нефть, плотность, соленость, радиоактивность, замещения, вибрации, показатель рН, сопротивление, содержание песка, теплопроводность или любую их комбинацию.

32. Способ по любому из пп.20-22, в котором датчики измеряют одну или более из следующих структурных характеристик обсадной колонны ствола скважины или трубы: сотрясения, вибрации, угол наклона, магнитные свойства, электрические свойства, положение бурового устройства или ориентацию устройства иного типа, а также характеристики напряжения и натяжения.

33. Способ по любому из пп.20-22, в котором датчик измеряет одну или более характеристик кольцевого пространства или необсаженной скважины на внешней стороне обсадной колонны ствола скважины, причем эти характеристики могут быть выбраны из следующего: давление, температура, сопротивление, плотность, показатель рН, электромагнитные и/или электрические поля, радиоактивность, соленость, звук, скорость звука, теплопроводность, а также другие химические и физические характеристики.

34. Способ по любому из пп.20-22, в котором получают отклик от окружающей среды с помощью одного или более из следующих средств: магнитные поля, электрические поля, звуковые волны, давление, температура, волны поперечного усилия и другие исполнительные элементы или исполнительные части скважинного управления технологическим процессом, при этом исполнительный элемент или исполнительную часть используют по отношению к пласту для поддержки любых перечисленных выше измерений.

35. Способ по любому из пп.20-22, включающий одно или более из следующего: подавление шума в смещении параметров, создаваемом технологическим процессом скважины или окружающей средой; предсказание и коррекция измерений вследствие градиентов, наводимых окружающей средой или системой технологического процесса скважины, для обеспечения корректного контроля в реальном времени герметичности скважины и ее состояния.

Документы, цитированные в отчете о поиске Патент 2014 года RU2518689C2

US 20060005965 A1, 12.01.2006
АППАРАТ ДЛЯ ПЕРЕДАЧИ МОЩНОСТИ, СПОСОБ ВЫРАБОТКИ СИГНАЛА ДИСТАНЦИОННОГО УПРАВЛЕНИЯ ВНУТРИ ТРУБНОЙ КОНСТРУКЦИИ И НЕФТЯНАЯ СКВАЖИНА 2001
  • Вайнгар Харолд Дж.
  • Бернетт Роберт Рекс
  • Севедж Вилльям Маунтджой
  • Карл Фредерик Гордон Мл.
  • Херш Джон Мишель
RU2262598C2
US 2008106972 A1, 08.05.2008
WO 2007071975 A1, 28.06.2007

RU 2 518 689 C2

Авторы

Годагер Ойвинд

Даты

2014-06-10Публикация

2010-01-07Подача