СВОБОДНО ОСЦИЛЛИРУЮЩИЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ Российский патент 2014 года по МПК H05H5/08 F41B6/00 

Описание патента на изобретение RU2523426C1

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц.

Известен линейный многоступенчатый ускоритель, состоящий из ферромагнитной частицы, диэлектрической трубки, тягового соленоида, управляющего устройства, датчика линейного ускорения трубки и средства поочередной коммутации (Патент РФ №2331033, МПК F41B 6/00. Опубл. 10.08.2008. Бюл.22),

Наиболее близким аналогом является резонансный электромагнитный ускоритель (Сухачев К.И., Семкин Н.Д., Калаев М.П., Телегин A.M., Родин Д.В., Пияков А.В. патент №2466340 F41B 6/00 опубл. 10.11.2012), содержащий ферромагнитный ускоряемый объект, цилиндрическую немагнитную трубу с соосно закрепленными на ней и последовательно расположенными тяговыми соленоидами, средства коммутации обмоток соленоидов по сигналам управляющего устройства, силовые шины коммутации, конденсаторный источник энергии, изолированные драйверы, обратные диоды, датчик тока и шины управления.

Недостатками патента являются следующие.

- Невозможность непрерывного ускорения потока частиц.

- Наличие сложной системы коммутации и управления.

- Необходимость использовать большой накопитель энергии.

Поставлена задача разаработать электромагнитный ускоритель свободный от вышеуказанных недостатков.

Поставленная задача достигается тем, что в электромагнитном ускорителе, содержащем ферромагнитный ускоряемый объект, цилиндрическую немагнитную трубу, согласно изобретению введены магнитный инжектор, резонаторы, блоки питания резонаторов, цепи обратной связи и система просчета фазы колебаний, соленоиды резонаторов соосно и последовательно расположены на диэлектрической трубе, резонаторы соединены с блоками питания резонаторов, информационный выход блоков питания через блоки обратной связи соединены с системой просчета фазы, выход которой подключен к управляющему входу магнитного инжектора.

Сущность изобретения подтверждается чертежом, где на фигуре 1 изображена структурная схема свободно осциллирующего электромагнитного ускорителя.

Устройство содержит ферромагнитный ускоряемый объект 1, диэлектрическую трубку 2, резонаторы 3, блоки питания резонаторов 4, цепи обратной связи 5, систему просчета фазы 6, магнитный инжектор 7. Ферромагнитная частица 1 находится внутри немагнитной диэлектрической трубки 2, на которой соосно закреплены соленоиды резонаторов 3, подключенные к блокам питания резонаторов 4, информационный выход которых соединен со входом блоков обратной связи 5, выход которых подключен к системе просчета фазы 6, выход системы просчета фазы соединен с управляющим входом магнитного инжектора 7.

Устройство работает следующим образом. Блоки питания резонаторов 4 запускают и подпитывают колебательный процесс в контуре резонаторов 3, причем частота свободных колебаний каждого следующего резонатора увеличивается. Контур каждого резонатора должен иметь максимально высокую добротность. Благодаря этому энергия запасается не в виде статичного электрического поля накопителя, как в классических электромагнитных ускорителях, а в виде динамичного электромагнитного. Информация о частоте и мгновенном значении тока в контуре поступает через цепи обратной связи 5 в систему расчета фазы 6, которая просчитывает, в какой момент времени фаза колебания всех контуров будет благоприятной для ускорения ферромагнитной частицы 1. При наступлении такого момента система просчета фазы подает управляющий импульс на магнитный инжектор 7, который выкидывает ферромагнитную ускоряемую частицу 1 в диэлектрическую трубу 2, подхваченная магнитным полем ускоряемая частица начинает падать по стенкам потенциальной ямы, созданной соленоидами резонаторов.

Применение предложенного технического решения позволяет отказаться от систем коммутации, упростить конструкцию ускорителя и снизить стоимость благодаря отказу от конденсаторного накопителя и от коммутаторов. Предложенный метод ускорения позволяет непрерывно ускорять поток частиц с некоторым распределением по скоростям. Универсальность ускорителя по отношению к ускоряемым массам сохраняется на высоком уровне благодаря легкости подстройки частоты свободных колебаний контуров, добавляя или убирая емкость резонатора. Таким образом, предложенный ускоритель позволяет добиться высоких скоростей частиц, но при этом отличается повышенной простотой конструкции и легкостью обслуживания.

Похожие патенты RU2523426C1

название год авторы номер документа
РЕЗОНАНСНЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ С КОМПЕНСАЦИЕЙ ПОТЕРЬ 2012
  • Семкин Николай Данилович
  • Пияков Алексей Владимирович
  • Сухачев Кирилл Игоревич
  • Ворох Дмитрий Александрович
RU2524574C1
РЕЗОНАНСНЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ 2011
  • Сухачев Кирилл Игоревич
  • Семкин Николай Данилович
  • Калаев Михаил Павлович
  • Телегин Алексей Михайлович
  • Родин Дмитрий Владимирович
  • Пияков Алексей Владимирович
RU2466340C1
РЕЗОНАНСНЫЙ РЕЛЬСОВЫЙ УСКОРИТЕЛЬ 2014
  • Сухачев Кирилл Игоревич
  • Семкин Николай Данилович
  • Пияков Алексей Владимирович
  • Ильин Евгений Андреевич
  • Видманов Алексей Сергеевич
RU2554054C1
МНОГОСТУПЕНЧАТЫЙ ЛИНЕЙНЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ 2019
  • Нейман Владимир Юрьевич
  • Нейман Людмила Андреевна
RU2735510C1
МНОГОСТУПЕНЧАТЫЙ УСКОРИТЕЛЬ С БЕГУЩИМ ПЕРЕКЛЮЧЕНИЕМ СОЛЕНОИДОВ 2006
  • Васильев Евгений Вячеславович
RU2324249C1
СИСТЕМА АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ СКОРОСТЬЮ СНАРЯДА ЭЛЕКТРОМАГНИТНЫМ УСКОРИТЕЛЕМ 2022
  • Мунасыпов Рустэм Анварович
  • Балгазин Искандер Ильсурович
RU2792929C1
Линейный электромагнитный ускоритель ферромагнитных цилиндрических тел 2022
  • Зверовщиков Александр Евгеньевич
  • Черепенников Илья Вячеславович
  • Черепенников Алесей Вячеславович
RU2788225C1
МНОГОСТУПЕНЧАТЫЙ РЕЛЬСОВЫЙ УСКОРИТЕЛЬ 2021
  • Сухачев Кирилл Игоревич
  • Дорофеев Александр Сергеевич
  • Бандяев Вячеслав Александрович
RU2761447C1
МНОГОКАНАЛЬНЫЙ ЛИНЕЙНЫЙ ИНДУКЦИОННЫЙ УСКОРИТЕЛЬ ЗАРЯЖЕННЫХ ЧАСТИЦ 2001
  • Кулиш Виктор Васильевич
  • Мельник Александра Клавдия
RU2198485C1
РЕЛЬСОВЫЙ УСКОРИТЕЛЬ МИКРОННЫХ ЧАСТИЦ 2015
  • Сухачев Кирилл Игоревич
  • Семкин Николай Данилович
RU2583451C1

Реферат патента 2014 года СВОБОДНО ОСЦИЛЛИРУЮЩИЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ

Изобретение относится к области ускорительной техники и может быть использовано для моделирования микрометеоритов и техногенных частиц. Свободно осциллирующий электромагнитный ускоритель содержит ферромагнитный ускоряемый объект, цилиндрическую немагнитную трубу, резонаторы, блоки питания резонаторов, цепи обратной связи и систему просчета фазы колебаний. Технический результат - повышение эффективности разгона за счет использования всей энергии конденсаторного накопителя на каждой ступени и за счет снижения длительности импульса. 1 ил.

Формула изобретения RU 2 523 426 C1

Свободно осциллирующий электромагнитный ускоритель, содержащий ферромагнитный ускоряемый объект, цилиндрическую немагнитную трубу, отличается тем, что в него введены резонаторы, блоки питания резонаторов, цепи обратной связи и система просчета фазы колебаний, резонаторы соединены с блоками питания резонаторов, информационный выход блоков питания соединен с входом блоков обратной связи, выходы которых подключены к входу системы просчета фазы, выход которой подключен к управляющему входу магнитного инжектора.

Документы, цитированные в отчете о поиске Патент 2014 года RU2523426C1

РЕЗОНАНСНЫЙ ЭЛЕКТРОМАГНИТНЫЙ УСКОРИТЕЛЬ 2011
  • Сухачев Кирилл Игоревич
  • Семкин Николай Данилович
  • Калаев Михаил Павлович
  • Телегин Алексей Михайлович
  • Родин Дмитрий Владимирович
  • Пияков Алексей Владимирович
RU2466340C1
ЦЕНТРОБЕЖНАЯ ФОРСУНКА 0
  • Н. С. Николаев, В. К. Замолуев, П. С. Попов, В. П. Козул Ев, В. А. Стрельцов Э. А. Шефер
SU234249A1
УСКОРИТЕЛЬ ВЫСОКОСКОРОСТНЫХ ТВЕРДЫХ ЧАСТИЦ 2008
  • Семкин Николай Данилович
  • Пияков Алексей Владимирович
  • Пияков Игорь Владимирович
  • Андрущенко Антон Борисович
  • Изюмов Михаил Владимирович
RU2371891C1
US 5763812C1, 09.06.1998
US 2011188638A1, 04.08.2011

RU 2 523 426 C1

Авторы

Семкин Николай Данилович

Пияков Алексей Владимирович

Сухачев Кирилл Игоревич

Ворох Дмитрий Александрович

Даты

2014-07-20Публикация

2012-12-19Подача