ПОЛОСНО-ПРОПУСКАЮЩИЙ СВЧ ФИЛЬТР Российский патент 2014 года по МПК H01P1/203 

Описание патента на изобретение RU2528148C1

Изобретение относится к технике сверхвысоких частот и может использоваться в селективных трактах приемных и передающих систем.

Известен шпильковый полосно-пропускающий микрополосковый фильтр, содержащий диэлектрическую подложку, одна сторона которой металлизирована и выполняет функцию заземляемого основания, а на вторую нанесены П-образные полосковые проводники резонаторов [Патент Microstrip filter № US 3754198 от 21.08.1973]. Недостатком такого фильтра является большая площадь подложки на частотах дециметрового и особенно метрового диапазона длин волн. Это связано с тем, что на низких частотах размеры шпильковых микрополосковых резонаторов становятся неприемлемо большими.

Наиболее близким по совокупности существенных признаков является полосковый полосно-пропускающий фильтр [А.А. Лексиков, A.M. Сержантов, Ф.Г. Сухин//Известия ВУЗов. Физика. Том 53, №9/2, 2010 г., стр.219 (Прототип)]. Каждый резонатор в таком фильтре образован парой П-образных полосковых проводников, расположенных друг над другом на разных сторонах подложки и развернутых разомкнутыми концами навстречу друг другу. Размеры таких резонаторов существенно меньше, а добротность существенно выше, чем в первом аналоге. Недостатком фильтра является низкий уровень подавления в полосах заграждения, что связано с большой величиной взаимной емкости между проводниками соседних резонаторов, особенно при использовании подложек с высокой диэлектрической проницаемостью.

Техническим результатом изобретения является увеличение уровня подавления в полосах заграждения.

Указанный технический результат достигается тем, что в полосно-пропускающем фильтре, содержащем полосковые резонаторы на подвешенной подложке, каждый из которых образован парой П-образных полосковых проводников, расположенных друг над другом на разных сторонах подожки и развернутых разомкнутыми концами навстречу друг другу, новым является то, что между проводниками соседних резонаторов расположен хотя бы один дополнительный полосковый проводник, замкнутый с одного конца на экран.

Отличие заявляемого устройства от наиболее близкого аналога заключается в том, что между проводниками соседних резонаторов расположен хотя бы один дополнительный полосковый проводник, замкнутый с одного конца на экран.

Это позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна». Признаки, отличающие заявляемое техническое решение от прототипа, не выявлены в других технических решениях при изучении данной и смежной областей техники и, следовательно, обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».

Изобретение поясняется чертежами:

На фиг.1а, б представлены варианты реализации двухрезонаторного полоскового фильтра заявляемой конструкции на подвешенной диэлектрической подложке.

На фиг.2 приведены измеренные амплитудно-частотные характеристики (АЧХ) заявляемого двухрезонаторного фильтра и фильтра прототипа.

На Фиг.3 приведена измеренная АЧХ двухрезонаторного заявляемого фильтра в узкой полосе частот.

На фиг.4 представлены рассчитанные АЧХ четырехрезонаторного полосно-пропускающего фильтра заявляемой конструкции и фильтра прототипа.

Заявляемый фильтр (Фиг.1а) содержит диэлектрическую подложку (1), подвешенную в металлическом корпусе (2), на обе поверхности которой нанесены полосковые П-образные металлические проводники резонаторов (3), электромагнитносвязанные между собой. Каждый резонатор образован двумя П-образными полосковыми проводниками, расположенными друг над другом на разных сторонах подожки и развернутыми разомкнутыми концами навстречу друг другу. Между резонаторами по крайней мере на одной поверхности подложки расположен полосковый проводник (4), замкнутый одним своим концом на экран. Входная и выходная линии передачи (5) подключены к полосковым П-образным проводникам резонаторов фильтра кондуктивно (гальванически).

Известно, что значение собственной добротности микрополосковых резонаторов в метровом и дециметровом диапазонах длин волн на практике обычно не превышает двух-трех сотен, причем она уменьшается с понижением частоты. При этом, кроме низкой добротности резонаторов в метровом диапазоне длин волн, устройства имеют слишком большие размеры. Одним из решений данной проблемы является применение многопроводных резонаторов на подвешенной подложке [Патент РФ №2237320, МПК 7 H01P 1/203, опубл. 27.09.2004, Бюл. №27]. Однако тот факт, что полосковые проводники в таком фильтре припаиваются к корпусу-экрану на обеих сторонах подложки, делает их неудобными в настройке. Кроме того, соединения проводников с экраном выполняются, как правило, посредством пайки припоем со сравнительно высоким удельным сопротивлением, а так как на участки пайки приходится максимальная плотность тока, то это существенно снижает потенциально высокую добротность таких резонаторов. И, наконец, входная и выходная линии передачи фильтра оказываются закороченными по постоянному току, что в некоторых случаях недопустимо.

В фильтре-прототипе проводники резонаторов не имеют соединений с экраном, поэтому такая конструкция не имеет замыкания подводящих линий на землю, что иногда является необходимым условием подключения фильтра в тракт. Однако наряду с перечисленными достоинствами фильтра прототипа ему присущ один существенный недостаток - низкий уровень подавления в полосах заграждения, что связано с большой величиной взаимной емкости между соседними резонаторами, особенно сильно это проявляется при использовании подложек с высокой диэлектрической проницаемостью.

Предлагаемая конструкция фильтра в значительной степени свободна от указанного недостатка. Заявляемый технический результат достигается введением между соседними резонаторами, по крайней мере, одного дополнительного проводника, замкнутого с одного конца на экран. Так как электрическая длина проводника на частотах полосы заграждения фильтра мала, то он представляет собой экран для СВЧ электрического поля. Таким образом, наличие дополнительного проводника существенно уменьшает величину взаимной емкости между соседними резонаторами фильтра и, следовательно, уменьшает коэффициент прохождения СВЧ мощности на частотах полосы заграждения.

Фильтр работает следующим образом. Входная и выходная линии передачи подключаются к проводникам как показано на Фиг.1, причем расстояние от концов проводников до точек подключения внешних линий передачи определяется заданным уровнем отражений в полосе пропускания фильтра. Сигналы, частоты которых попадают в полосу пропускания, проходят на выход фильтра с минимальными потерями, в то время как на частотах вне полосы пропускания происходит отражение сигналов от входа устройства.

Важно отметить, что введение дополнительного проводника практически не приводит к увеличению вносимых потерь в полосе пропускания фильтра. Это объясняется тем, что электрическая длина такого проводника на частотах полосы пропускания много меньше электрической длины резонаторов и, следовательно, величина наводимых в нем СВЧ-токов незначительна.

На Фиг.2 представлены измеренные АЧХ заявляемого фильтра (штриховая линия) и фильтра-прототипа (точки). Фильтры отличались друга от друга только наличием дополнительного экранирующего проводника, расположенного в центре зазора между резонаторами. Изготовленные фильтры имели следующие параметры полосковой структуры: диэлектрическая проницаемость подложки ε=9.8, ее толщина h=0.5 мм, ширина полосковых проводников резонаторов w=4 мм, наружные размеры П-образных проводников 14×14 мм2, длина дополнительного проводника 8.5 мм при его ширине 0.5 мм, расстояние от поверхности подложки до верхнего и нижнего экранов ha=4.25 мм. Фильтры имеют относительную ширину полосы пропускания Δƒ/ƒ0≈2% (по уровню - 3 дБ) с центральной частотой ƒ0≈670 МГц. Минимальные потери в полосе пропускания составили около 1.1 дБ. Из представленных зависимостей видно, что введение между резонаторами дополнительного замкнутого с одного конца на экран проводника приводит не только к повышению крутизны склонов полосы пропускания, но и к существенному увеличению уровня подавления в полосах заграждения. При этом основные параметры полосы пропускания остаются практически неизменными.

Дальнейшего улучшения селективных свойств заявляемого фильтра можно достичь при использовании не одного, а двух дополнительных полосковых проводников, расположенных между резонаторами и замкнутых одним концом на экран с противоположных сторон подложки (Фиг.1б). Измеренная АЧХ этого фильтра представлена на Фиг.2 сплошной линией. Такой фильтр имеет протяженную полосу заграждения - около двух октав и достаточно большую (для двухрезонаторной конструкции) величину подавления за пределами полосы пропускания, существенно лучшую, чем у фильтра-прототипа. На Фиг.3 представлены частотные зависимости коэффициента прохождения (сплошная линия) и отражения (точки) этого же фильтра, измеренные вблизи полосы пропускания.

Как известно, одним из основных способов улучшения селективности фильтров является увеличение количества резонаторов в них. На Фиг.4 представлена рассчитанная АЧХ четырехрезонаторного фильтра заявляемой конструкции (сплошная линия), в которой между парами соседних резонаторов расположены по два дополнительных полосковых проводника, замкнутых одним концом на экран с противоположных сторон подложки. Конструктивные параметры были такими же, как и для двухрезонаторного фильтра, рассмотренного выше, за исключением зазоров между резонаторами. Расстояние между парой внутренних резонаторов в фильтре составило S1=4.25 мм, а между наружными парами S2=3.5 мм. На этом же рисунке для сравнения приведена АЧХ этого же фильтра (штриховая линия), но без дополнительных проводников (фильтр-прототип). Из приведенных зависимостей видно, что заявляемый фильтр имеет значительно лучшие селективные свойства, в частности уровень подавления в полосах заграждения в среднем на 40 дБ выше, чем у фильтра-прототипа.

Таким образом, полосковый фильтр на основе заявляемой конструкции не только имеет малое вносимое затухание СВЧ сигнала в полосе пропускания, но и характеризуется значительно более высоким уровнем подавления помех в полосах заграждения по сравнению с традиционными конструкциями полосковых и микрополосковых фильтров. Это позволяет использовать такие устройства в современных системах связи, радиолокации, а также в измерительной аппаратуре.

Похожие патенты RU2528148C1

название год авторы номер документа
ПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2009
  • Беляев Борис Афанасьевич
  • Лексиков Александр Александрович
  • Сержантов Алексей Михайлович
  • Сухин Федор Геннадьевич
  • Изотов Андрей Викторович
RU2402121C1
МИКРОПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2011
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2475900C1
МИНИАТЮРНЫЙ ПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2018
  • Беляев Борис Афанасьевич
  • Сержантов Алексей Михайлович
  • Лексиков Александр Александрович
  • Савишников Максим Олегович
  • Бальва Ярослав Федорович
  • Лексиков Андрей Александрович
  • Дмитриев Дмитрий Дмитриевич
RU2710386C2
МИКРОПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2015
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2607303C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2017
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2672821C1
СВЧ ФИЛЬТР 2021
  • Беляев Борис Афанасьевич
  • Сержантов Алексей Михайлович
  • Ходенков Сергей Александрович
  • Попов Алексей Михайлович
RU2781040C1
ПОЛОСКОВЫЙ ФИЛЬТР 2009
  • Беляев Борис Афанасьевич
  • Бальва Ярослав Федорович
  • Лексиков Александр Александрович
  • Сержантов Алексей Михайлович
  • Сухин Федор Геннадьевич
RU2400874C1
ПОЛОСКОВЫЙ РЕЗОНАТОР 2014
  • Беляев Борис Афанасьевич
  • Галеев Ринат Гайсеевич
  • Сержантов Алексей Михайлович
  • Лексиков Александр Александрович
  • Бальва Ярослав Федорович
  • Лексиков Андрей Александрович
RU2577485C1
МИКРОПОЛОСКОВЫЙ ШИРОКОПОЛОСНЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2014
  • Беляев Борис Афанасьевич
  • Галеев Ринат Гайсеевич
  • Ходенков Сергей Александрович
RU2543933C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2011
  • Беляев Борис Афанасьевич
  • Тюрнев Владимир Вениаминович
  • Сержантов Алексей Михайлович
RU2480867C1

Иллюстрации к изобретению RU 2 528 148 C1

Реферат патента 2014 года ПОЛОСНО-ПРОПУСКАЮЩИЙ СВЧ ФИЛЬТР

Изобретение относится к технике сверхвысоких частот и может использоваться в селективных трактах приемных и передающих систем. Технический результат - увеличение уровня подавления в полосах заграждения. Полосно-пропускающий СВЧ фильтр, содержащий полосковые резонаторы на подвешенной подложке, каждый из которых образован парой П-образных полосковых проводников, расположенных друг над другом на разных сторонах подложки и развернутых разомкнутыми концами навстречу друг другу, при этом между проводниками соседних резонаторов расположен хотя бы один дополнительный полосковый проводник, замкнутый одним концом на экран. 4 ил.

Формула изобретения RU 2 528 148 C1

Полосно-пропускающий СВЧ фильтр, содержащий полосковые резонаторы на подвешенной подложке, каждый из которых образован парой П-образных полосковых проводников, расположенных друг над другом на разных сторонах подложки и развернутых разомкнутыми концами навстречу друг другу, отличающийся тем, что между проводниками соседних резонаторов расположен хотя бы один дополнительный полосковый проводник, замкнутый одним концом на экран.

Документы, цитированные в отчете о поиске Патент 2014 года RU2528148C1

МИКРОПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2011
  • Беляев Борис Афанасьевич
  • Ходенков Сергей Александрович
RU2475900C1
ПОЛОСКОВЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР 2009
  • Беляев Борис Афанасьевич
  • Лексиков Александр Александрович
  • Сержантов Алексей Михайлович
  • Сухин Федор Геннадьевич
  • Изотов Андрей Викторович
RU2402121C1
СВЧ-ФИЛЬТР 2006
  • Рожков Владимир Николаевич
RU2321107C1
Полосно - пропускающий свч-фильтр 1990
  • Зильберман Петр Ефимович
  • Огрин Юрий Федорович
SU1793498A1
ПОЛОСОВОЙ ПЕРЕСТРАИВАЕМЫЙ ФИЛЬТР СВЧ 1991
  • Осипов Л.С.
RU2065232C1
ПОЛОСНО-ПРОПУСКАЮЩИЙ СВЧ-ФИЛЬТР 2000
  • Хрусталев В.А.
  • Востряков Ю.В.
  • Разинкин В.П.
  • Рубанович М.А.
RU2174737C2
US 2000143458 A1, 19.06.2008
US 5021757 A, 04.06.1991

RU 2 528 148 C1

Авторы

Беляев Борис Афанасьевич

Сержантов Алексей Михайлович

Бальва Ярослав Федорович

Лексиков Александр Александрович

Тюрнев Владимир Вениаминович

Даты

2014-09-10Публикация

2013-05-15Подача