РЕЗОНАНСНОЕ УСТРОЙСТВО ДЛЯ БЛИЖНЕПОЛЕВОГО СВЧ-КОНТРОЛЯ ПАРАМЕТРОВ МАТЕРИАЛОВ Российский патент 2014 года по МПК G01N22/00 G01R27/26 

Описание патента на изобретение RU2529417C1

зобретение относится к области радиотехники и электроники и может быть использовано как самостоятельно для измерения электрофизических параметров материалов (совместно с генератором СВЧ и измерителем КСВН), так и в составе более сложных функциональных устройств: комплексных измерительных систем, комплексных систем по производству и контролю параметров материалов, автоматизированных измерительных, производственных и производственно-измерительных комплексов и т.д.

Известно устройство на основе коаксиального зонда, представляющее собой разомкнутый на конце, коаксиальный кабель с выступающим за пределы коаксиала внутренним проводником (Устройство для измерения диэлектрической проницаемости материалов / Д.А. Усанов, А.Ю. Вагарин, А.А. Безменов // А.С. 1114979, СССР. Заявлено 22.06.82. Опубл. 07.08.84. Бюл. №35).

Однако данное устройство обладает недостаточно высокой чувствительностью для использования в микро- и наноэлектронике.

Известно близкое по принципу действия устройство на основе коаксиальной линии, представляющее собой резонансный, разомкнутый на конце, коаксиальный кабель с выступающим за пределы коаксиала внутренним проводником, подключенный через разделительный конденсатор и ответвитель к СВЧ-генератору. Измерения производятся при поднесении к разомкнутому концу коаксиального кабеля образца в широком диапазоне значений диэлектрической проницаемости (1-230) (S.M. Anlage, D.E. Steinhauer, B.J. Feenstra, C.P. Vlahacos, V.C. Welstood. Near-Field Microwave Microscopy of Material properties // Microwave Superconductivity. - Amsterdam. - 2001. - P.239-269). Контролируемый прижим внутреннего проводника обеспечивал пространственное разрешение порядка 1 мкм.

Однако данное устройство в бесконтактном режиме обеспечивает пространственное разрешение не более 30 мкм, что также ограничивает сферу его применения.

Известно близкое по принципу действия к предлагаемому решению устройство на основе коаксиальной линии, совмещенное с туннельным микроскопом. Оно представляет собой резонансный, разомкнутый на конце, коаксиальный кабель с выступающим за пределы коаксиала внутренним проводником, подключенный через разделительный конденсатор и ответвитель к СВЧ-генератору, совмещенный с туннельным микроскопом, позволяющим точно контролировать расстояние между зондом и исследуемым материалом, обеспечивающее разрешение по высоте 2,5 нм. Такое разрешение достигнуто при работе генератора на частоте из диапазона 7-11 ГГц (A. Imtiaz, S. Anlage. A novel Microwave Frequeny Scanning Capacitance Microscope // Ultramicroscopy. - 2003. - V.94 - Issues 3-4. - P.209-216).

Однако данное устройство не позволяет осуществлять контроль в широком диапазоне значений проводимости образцов полупроводниковых материалов вследствие низкой добротности резонансной системы и требует контроля расстояния между зондом и исследуемым материалом с точностью до 2.5 нм.

Известно близкое по конструктивному исполнению к предлагаемому решению устройство для измерения комплексной диэлектрической проницаемости низкоимпедансных материалов на СВЧ. В ближнеполевом СВЧ-микроскопе, предложенном авторами (M. Golosovsky, D. Davidov. Novel millimeter-wave neareld resistivity microscope. - Appl. Phys. Lett.1996.- т.68, v.11 - p.p.1579-1581), роль резонатора выполняла резонансная диафрагма, устанавливаемая на конце прямоугольного волновода и перекрывающее его поперечное сечение. Отверстие в диафрагме представляло собой узкую щель шириной b и длиной а, вырезанную в тонкой проводящей пластине вдоль ее широкой стороны. Следует отметить, что нагруженная добротность такой резонансной диафрагмы может быть существенно меньше 100.

Однако данное устройство вследствие низкой локальности неспособно различать участки исследуемого образца с размерами менее 30 микрометров, что недостаточно для использования в микро- и наноэлектронике.

Известно близкое по принципу действия к предлагаемому решению устройство для измерения параметров материала, предложенное авторами (Устройство для измерения параметров материалов / Д.А. Усанов, С.С. Горбатов, А.Н. Сорокин, В.Ю. Кваско // Пат. РФ №2373545, - №2009122332/19; Заявлено 03.06.09. Опубл. 20.11.09. Бюл. №32). Устройство представляет собой прямоугольный волновод с введенным штырем, установленным в центральной части на одной из широких стенок волновода параллельно короткозамыкателю с зазором между ним и другой широкой стенкой. Короткозамыкатель имеет на поверхности, обращенной внутрь волновода, полукруглую выемку, по всей его ширине параллельную штырю, и отверстие, расположенное в выемке, в котором коаксиально расположен зонд в виде иглы, с помощью петли связи гальванически соединенный с короткозамыкателем, выступающим за пределы волновода.

Однако данная система вследствие недостаточной добротности резонатора обладает невысокой чувствительностью измерений в широком диапазоне значений диэлектрической проницаемости и проводимости.

Наиболее близким по конструктивному исполнению к заявляемому решению является устройство для измерения электрофизических параметров материалов на СВЧ в ближнеполевом СВЧ-микроскопе, предложенном авторами (Резонансное ближнеполевое устройство для СВЧ-микроскопа/Д.А. Усанов, С.С. Горбатов//Пат.РФ №2417379, №2009142478/28; Заявлено 19.11.09. Опубл. 27.04.11. Бюл. №12.). Резонансное ближнеполевое устройство СВЧ-микроскопа содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство, отличающееся тем, что в него введена в качестве оконечного устройства волноводная резонансная система, содержащая входную индуктивную и выходную емкостную диафрагмы, и два прямоугольных выступа между диафрагмами, гальванически соединенных с выходной емкостной диафрагмой, установленных в центральной части на широких стенках волновода параллельно поперечному сечению волновода, при этом расстояние между диафрагмами выбрано из условия возникновения резонанса и составляет величину, много меньшую длины волны.

Однако данное устройство обладает недостаточно высокой чувствительностью, не позволяющей разрешать объекты с локальностью менее 10 мкм.

Задача настоящего изобретения заключается в получении информации о топологии структур с локальностью порядка 1 микрометра и менее, с одновременным измерением параметров материала (диэлектрической проницаемости в диапазоне 1.5÷400, проводимости в диапазоне 2·10-2-1·м-1÷107 Ом-1·м-1).

Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного для определения параметров материалов с диэлектрической проницаемостью в диапазоне 1.5÷400 и проводимостью в диапазоне 2·10-2-1·м-1÷107 Ом-1·м-1.

Указанный технический результат достигается тем, что устройство для ближнеполевого СВЧ-контроля параметров материалов содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, согласно решению на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины.

Изобретение поясняется чертежами, где на фиг.1 и 2 приведено изображение предлагаемого устройства для измерения параметров материалов, на фиг.3 приведена зависимость отраженного сигнала от исследуемой встречно-штыревой периодической структуры в предлагаемом решении. Позициями на чертежах обозначены:

1 - волновод;

2 - металлическая диафрагма;

3 - плоскопараллельный образец диэлектрика;

4 - зонд;

5 - щель;

а - размер широкой стенки волновода;

b - размер узкой стенки волновода;

m - толщина диафрагмы 2;

t - толщина диэлектрика 3;

f - длина щели,

g - ширина щели 5.

Заявляемое устройство представляет собой прямоугольный волновод 1 с подключенным к нему СВЧ-генератором (не показано), измерительное устройство (не показано). Устройство содержит металлическую диафрагму 2, установленную на конце прямоугольного волновода и перекрывающую его поперечное сечение. Отверстие в диафрагме представляет собой узкую щель шириной g и длиной f, вырезанную в проводящей пластине вдоль ее широкой стороны. С внешней стороны на диафрагму наложен плоскопараллельный образец диэлектрика 3 с площадью, равной площади фланца волновода, и толщиной t, значительно меньшей длины волны. Толщина образца диэлектрика может изменяться в пределах от 10 мкм до 500 мкм. Диэлектрическая проницаемость диэлектрика 2-9.8. Электрическая длина диэлектрика должна быть намного меньше длины волны основного типа λв, чтобы обеспечить эффективное возбуждение зонда полем излучения диафрагмы, что соответствует выполнению условия t ε λ в . На поверхности диэлектрической пластины закреплен металлический зонд 4, расположенный напротив середины щели 5 в диафрагме, перпендикулярно ей. Зонд представляет собой отрезок проволоки диаметром от 0.1 до 1.5 мм, состоящий из двух участков разной длины, изогнутых под прямым углом друг к другу. Общая длина отрезка проволоки составляет от 12 мм до 20 мм. Длинная часть отрезка проволоки расположена в плоскости диэлектрика перпендикулярно щели в диафрагме. Короткая часть отрезка изогнутой проволоки перпендикулярна плоскости диафрагмы и имеет заостренный конец. Зонд не имеет гальванического контакта с диафрагмой. В такой системе можно ожидать более высокой степени локальности, чем в прототипе, поскольку она определяется заостренным концом проволоки. Размер острия составляет 100 нм и менее. Экспериментально установлено, что наилучшая локальность составляет ≈2 нм.

Резонансные свойства проявляются за счет взаимодействия емкостной щели и зонда, причем вследствие высокой концентрации СВЧ поля, создаваемой металлической диафрагмой, плоскопараллельным образцом диэлектрика и зондом, достигается высокая добротность такой системы, а следовательно, высокая чувствительность к изменению характеристик близко расположенного к зонду образца.

Устройство работает следующим образом. СВЧ сигнал от генератора поступает в волновод 1. Происходит взаимодействие в волноводе 1 СВЧ сигнала с металлической диафрагмой 2. В результате возникает ближнее поле, приводящее к возникновению резонанса. Ближнее поле через отверстие в металлической диафрагме и диэлектрик 3 взаимодействует с зондом 4. Ближнее поле, локализованное вблизи зонда, взаимодействует с образцом, который располагается вблизи зонда. В измерительное устройство поступает отраженный сигнал, и проводятся измерения частоты резонанса, добротности и коэффициента отражения. В данном измерительном устройстве, благодаря взаимодействию ближнего поля вблизи зонда с измеряемым образцом при незначительном расстоянии между образцом и зондом (несколько десятков мкм или контакт без усилия) возникает перестройка резонансной картины, выражающаяся в изменении частоты резонанса, его добротности и величины коэффициента отражения на частоте резонанса в зависимости от величины диэлектрической проницаемости, проводимости исследуемого слоя. Данные измерений сравниваются с калибровочными кривыми, в результате чего делается вывод обо всех вышеперечисленных величинах.

На фиг.3 приведены данные о топологии фрагмента встречно-штыревой структуры (фоновое изображение) с локальностью порядка менее 1 микрометра. В этом случае зонд устанавливался на расстоянии 2 мкм от исследуемой структуры. Установка зонда и контроль его положения при движении осуществлялось при помощи длиннофокусного оптического микрометрического объектива. На фиг.3 поверх фотоизображения тестовой структуры приведена экспериментальная зависимость частоты резонанса системы от смещения измерительного зонда вдоль оси х. Образец перемещался относительно зонда с помощью микрометрического винта. Видно, что при изменении местоположения зонда происходит изменение резонансной частоты, что позволяет судить о разрешении металлических элементов исследуемой структуры с шириной менее 1 мкм. Значения резонансной частоты при прохождении зонда над неметаллизированной частью встречно-штыревой структуры были различными в зависимости от наличия или отсутствия на ней следов не удаленного фоторезиста.

Пример практической реализации устройства.

Разрабатывалось устройство в трехсантиметровом диапазоне длин волн со следующими параметрами:

Рабочий диапазон генератора, ГГц 8-12 Резонансная частота, ГГц 8,488 Коэффициент отражения при отсутствии образцов 0,012 Добротность системы при отсутствии образцов 9500 Добротность системы при измерении образцов (нагруженная добротность) 9500

Таким образом, использование системы из плоскопараллельного образца диэлектрика и металлической диафрагмы позволяет получить разрешение менее 1 мкм и обеспечить измерение диэлектрической проницаемости в диапазоне 1.5÷400 и проводимости в диапазоне 2·10-2-1·м-1÷107 Ом-1·м-1, что значительно превышает разрешение устройства-прототипа.

Чувствительность системы при изменении размеров длинной части зонда от 17 мм до 9 мм при постоянной короткой части, равной 3 мм, толщина диэлектрика 500 мкм, угол наклона зонда 90°.

Размер длинной части зонда, мм Диэлектрическая проницаемость Чувствительность по частоте, кГц/(ε+Δε) 17 4.8 470 16 4.7 620 15 4.6 810 14 4.5 1120 13 4.4 970 12 4.3 1030 11 4.2 1090

Чувствительность системы при изменении размеров короткой части зонда от 9 мм до 3 мм при постоянной длинной части, равной 14 мм, толщина диэлектрика 500 мкм, угол наклона зонда 90°.

Размер короткой части зонда, мм Диэлектрическая проницаемость Чувствительность по частоте, кГц/(ε+Δε) 9 4.8 410 8 4.7 530 7 4.6 340 6 4.5 1160 5 4.4 370 4 4.3 290 3 4.2 1120

Чувствительность системы при изменении угла наклона зонда от 0 до 90, размер короткой части зонда 3 мм, длинной части - 14 мм, толщина диэлектрика 500 мкм.

Угол наклона зонда, градусы Диэлектрическая проницаемость Чувствительность по частоте, кГц/(ε+Δε) 0 4.8 100 15 4.7 220 30 4.6 150 45 4.5 1010 60 4.4 510 75 4.3 1370 90 4.2 1120

Чувствительность системы при изменении толщины диэлектрика, размер короткой части зонда 3 мм, длинной части - 14 мм, угол наклона зонда 90°.

Толщина диэлектрика, мкм Диэлектрическая проницаемость Чувствительность по частоте, кГц/(ε+Δε) 15 4.8 150 30 4.7 190 45 4.6 650 60 4.5 780 75 4.4 1070 90 4.3 1100 105 4.2 1060 500 4.8 1120 1500 4.7 140

Чувствительность системы при изменении диэлектрической проницаемости диэлектрика, размер короткой части зонда 3 мм, длинной части - 14 мм, угол наклона зонда 90°, толщина плоскопараллельного образца диэлектрика между зондом и металлической диафрагмой 90 мкм.

Диэлектрическая проницаемость Чувствительность по частоте, кГц 2.1 150 9.8 190 16 650 60 780 70 700 90 600 400 1060

Чувствительность системы при изменении проводимости в диапазоне 2·10-2-1·м-1÷107 Ом-1·м-1, размер короткой части зонда 3 мм, длинной части - 14 мм, угол наклона зонда 90°, толщина плоскопараллельного образца диэлектрика между зондом и металлической диафрагмой 90 мкм.

Проводимость, Ом-1·м-1 Чувствительность по частоте, кГц 2·102 150 104 190 105 650 107 180

Приведенные таблицы позволяют оценить чувствительность системы при различных параметрах плоскопараллельного диэлектрического образца, металлической диафрагмы и зонда с длиной от 12 до 20 мм в виде металлической проволоки с диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутой под прямым углом. Отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости широкой стенки волновода.

Похожие патенты RU2529417C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МЕТАЛЛОДИЭЛЕКТРИЧЕСКИХ СТРУКТУР 2013
  • Усанов Дмитрий Александрович
  • Никитов Сергей Аполлонович
  • Скрипаль Александр Владимирович
  • Орлов Вадим Ермингельдович
  • Фролов Александр Павлович
RU2534728C1
РЕЗОНАНСНОЕ БЛИЖНЕПОЛЕВОЕ УСТРОЙСТВО ДЛЯ СВЧ МИКРОСКОПА 2009
  • Усанов Дмитрий Александрович
  • Горбатов Сергей Сергеевич
RU2417379C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МАТЕРИАЛОВ 2008
  • Усанов Дмитрий Александрович
  • Горбатов Сергей Сергеевич
  • Сорокин Алексей Николаевич
  • Кваско Владимир Юрьевич
RU2373545C1
СПОСОБ ИЗМЕРЕНИЯ ПОВЕРХНОСТНОГО СОПРОТИВЛЕНИЯ СВЕРХПРОВОДЯЩИХ ПЛЕНОК 1994
  • Карасев Александр Семенович
RU2099723C1
СПОСОБ ИЗМЕРЕНИЯ ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2014
  • Никулин Сергей Михайлович
  • Хилов Владимир Павлович
  • Малышев Илья Николаевич
RU2548064C1
СПОСОБ ИЗМЕРЕНИЯ ВЛАЖНОСТИ НА СВЧ И ЧУВСТВИТЕЛЬНЫЙ ЭЛЕМЕНТ В ВИДЕ ОТКРЫТОГО ВОЛНОВОДНОГО РЕЗОНАТОРА ДЛЯ ОСУЩЕСТВЛЕНИЯ СПОСОБА 1992
  • Кондратьев Е.Ф.
RU2096768C1
Дискретный диодный СВЧ-фазовращатель 1990
  • Батанов Алексей Степанович
  • Грачев Михаил Никитович
  • Зубков Всеволод Львович
  • Карцев Юрий Алексеевич
  • Сергеев Евгений Алексеевич
SU1775762A1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ СПЛОШНОСТИ ПОТОКОВ КРИОПРОДУКТОВ 1996
  • Гречко Александр Георгиевич
  • Архаров Алексей Михайлович
  • Архаров Иван Алексеевич
  • Емельянов Михаил Геннадиевич
RU2108567C1
СВЧ-мультиплексор 2017
  • Мещанов Валерий Петрович
  • Царев Владислав Алексеевич
  • Шалаев Павел Данилович
  • Кац Борис Маркович
RU2645033C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СМЕСИ ВЕЩЕСТВ 1999
  • Жиров М.В.
  • Совлуков А.С.
RU2164021C2

Иллюстрации к изобретению RU 2 529 417 C1

Реферат патента 2014 года РЕЗОНАНСНОЕ УСТРОЙСТВО ДЛЯ БЛИЖНЕПОЛЕВОГО СВЧ-КОНТРОЛЯ ПАРАМЕТРОВ МАТЕРИАЛОВ

Изобретение относится к области радиотехники и электроники и может быть использовано для измерения электрофизических параметров материалов. Технический результат заключается в повышении разрешающей способности до порядка 1 микрометра, а также повышении чувствительности до уровня, достаточного для определения параметров материалов с диэлектрической проницаемостью в диапазоне 1.5÷400 и проводимостью в диапазоне 2·10-2-1·м-1÷107 Ом-1·м-1.Заявленное устройство содержит СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, согласно решению на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины. 3 ил., 1 прим.

.

Формула изобретения RU 2 529 417 C1

Устройство для ближнеполевого СВЧ-контроля параметров материалов, содержащее СВЧ-генератор с подключенным к нему прямоугольным волноводом, имеющим измерительное устройство с волноводной резонансной системой в качестве оконечного устройства, причем оконечное устройство содержит емкостную металлическую диафрагму, отличающееся тем, что на емкостную металлическую диафрагму наложен плоскопараллельный образец диэлектрика с площадью, равной площади фланца волновода, а на образец диэлектрика наложен зонд в виде металлической проволоки с длиной от 12 до 20 мм и диаметром от 0,1 до 0,5 мм с заостренным концом, изогнутым под прямым углом, отрезок зонда большей длины расположен на диэлектрической пластине перпендикулярно щели в диафрагме, отрезок зонда с заостренным концом меньшей длины перпендикулярен плоскости образца диэлектрика, при этом толщина плоскопараллельного образца диэлектрика t выбрана из условия t ε λ в , где λв - длина волны основного типа в волноводе, ε - диэлектрическая проницаемость пластины.

Документы, цитированные в отчете о поиске Патент 2014 года RU2529417C1

РЕЗОНАНСНОЕ БЛИЖНЕПОЛЕВОЕ УСТРОЙСТВО ДЛЯ СВЧ МИКРОСКОПА 2009
  • Усанов Дмитрий Александрович
  • Горбатов Сергей Сергеевич
RU2417379C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ПАРАМЕТРОВ МАТЕРИАЛОВ 2008
  • Усанов Дмитрий Александрович
  • Горбатов Сергей Сергеевич
  • Сорокин Алексей Николаевич
  • Кваско Владимир Юрьевич
RU2373545C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ЭЛЕКТРОФИЗИЧЕСКИХ ПАРАМЕТРОВ ПОЛУПРОВОДНИКОВ БЕСКОНТАКТНЫМ СВЧ МЕТОДОМ 2010
  • Владимиров Валерий Михайлович
  • Марков Владимир Витальевич
  • Мартыновский Владимир Николаевич
  • Шепов Владимир Николаевич
RU2430383C1
JP 2012220495 A, 12.11.2012
Устройство для измерения диэлектрической проницаемости материалов 1982
  • Усанов Дмитрий Александрович
  • Вагарин Анатолий Юрьевич
  • Безменов Алексей Алексеевич
SU1114979A1

RU 2 529 417 C1

Авторы

Усанов Дмитрий Александрович

Горбатов Сергей Сергеевич

Кваско Владимир Юрьевич

Фадеев Алексей Владимирович

Даты

2014-09-27Публикация

2013-10-25Подача