СПОСОБ РЕГИСТРАЦИИ ДАННЫХ РАДИОАКТИВНОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ Российский патент 2014 года по МПК G01V5/12 

Описание патента на изобретение RU2530471C1

Группа изобретений относится к спектрометрическим измерениям гамма-излучения, используемым для количественного определения содержания радиоактивных элементов горных пород во время каротажа нефтегазовых скважин.

Известны способ спектрометрического гамма-каротажа и устройство для его проведения (патент РФ №2191413, приор. 19.06.2001 г.).

Способ заключается в измерении интенсивностей гамма-излучения, отфильтрованного экраном, выполненным из металла с малым атомным номером, например не больше, чем у титана, регистрации гамма-излучения сцинтилляционным детектором, оцифровке зарегистрированных сигналов, их накоплении в виде амплитудно-временных спектров, передаче на поверхность. Гамма-излучение дополнительно пропускают через экран, выполненный из металла с большим атомным номером, например не меньше, чем у свинца, регистрируют спектр, имеющий характерную форму в области 0,02-0,3 мэВ, запоминают его как опорный, проводят измерения в скважине и каждый полученный спектр приводят в соответствие со спектром, имеющим характерную форму в области 0,02-0,3 мэВ, например, по методу наименьших квадратов (принят в качестве прототипа к заявляемому способу).

Известное устройство содержит охранный кожух, изготовленный из титана, в котором размещены детектор гамма-излучения, соединенный с фотоэлектронным умножителем, обеспечиваемым питанием от блока питания высокого напряжения и имеющим выход на вход блока преобразования аналог - код, второй вход которого соединен с выходом блока преобразования вторичных напряжений, а выходы соединены с блоком центрального процессора: один непосредственно, другой через блок накопления амплитудно-временных спектров. Выход блока центрального процессора соединен с блоком питания высокого напряжения, вход которого соединен с выходом блока преобразования вторичных напряжений, выход которого соединен с блоком накопления амплитудно-временных спектров, вход которого соединен с выходом блока коммутации, соединенным с разъемом головки скважинного прибора и проходным разъемом, выход которого соединен с входом блока центрального процессора. Детектор помещен в экран, выполненный из свинца.

Использование способа и устройства позволяет стабилизировать энергетическую шкалу спектрометра.

Недостаток известного технического решения заключается в следующем.

Стабилизация энергетической шкалы спектрометрического тракта происходит без коррекции постоянной составляющей на выходе входного усилителя, что приводит к ошибке при определении энергии импульсов гамма-квантов. Особенно значительная ошибка получается при определении энергии низкоэнергетических импульсов. Из-за влияния внешних условий (температура, время) происходит изменение величины анодного тока ФЭУ, вследствие чего происходит смещение постоянной составляющей на выходе входного усилителя.

В известном способе стабилизация энергетической шкалы происходит по вычисленной линейной зависимости номера канала спектрометрического тракта от энергии гамма-квантов. В качестве опорных точек используется энергия характеристического излучения свинца и нулевой линии.

Известно устройство спектрометрического гамма-каротажа, содержащее блок преобразования и усиления, имеющий датчик регистрации гамма-квантов, соединенный с преобразователем сигнала, выход которого подключен к входу усилителя-формирователя, к выходу которого подключен управляемый усилитель, к выходу которого подключен аналого-цифровой преобразователь (АЦП), к выходу которого подключен микроконтроллер квантования и накопления спектра, к выходу которого подключен периферийный микроконтроллер, к выходу которого подключены буферы интерфейса и оперативное запоминающее устройство (ОЗУ) спектра. Устройство содержит цифроаналоговый преобразователь (ЦАП) и светодиод, выход из периферийного микроконтроллера подключен к входу в ЦАП, а выход ЦАП подключен к светодиоду. К периферийному микроконтроллеру подключено оперативно запоминающее устройство и ОЗУ набора спектра, а также буфер интерфейса (патент РФ на полезную модель №31659, приор. 17.04.2003 г., опубл. 20.08.2003 г.). (Принят в качестве прототипа к заявляемому устройству.)

Недостаток известного устройства заключается в отсутствии возможности коррекции смещения нуля выходного сигнала при воздействии внешних условий на детектор гамма-квантов, что снижает точность измерений.

Задача заявленной группы изобретений состоит в разработке способа и устройства, позволяющих повысить точность определения энергии гамма-квантов путем привязки номера канала спектрометрического тракта к энергии гамма-квантов во всем диапазоне.

Указанная задача решается тем, что в способе регистрации данных радиоактивного каротажа, включающем облучение исследуемой среды в скважине источником радиоактивного излучения, регистрацию интенсивностей гамма-излучения, усиление и оцифровку зарегистрированных сигналов, их периодическое накопление в виде амплитудных спектров и передачу на поверхность, в отличие от известного способа, производят восстановление нулевого уровня усиленного выходного сигнала в циклическом режиме, в начале каждого периода накопления амплитудных спектров.

Поставленная задача решается тем, что в устройстве для регистрации данных радиоактивного каротажа, включающем детектор интенсивностей гамма-излучения, соединенный с высоковольтным преобразователем питания (источник питания) и с входным усилителем, выход которого соединен с аналого-цифровым преобразователем (АЦП), к выходам которого подключены микроконтроллер квантования и накопления спектра, и оперативно запоминающее устройство (ОЗУ), а также содержащем цифроаналоговый преобразователь (ЦАП), в отличие от известного, один выход микроконтроллера квантования и накопления спектра соединен с ЦАП, выход которого соединен с входом входного усилителя, выход которого соединен с дискриминатором, выход которого соединен с блоком временных интервалов, который подключен к входу АЦП, а другой выход микроконтроллера квантования и накопления спектра соединен с другим ЦАП, выход которого соединен с источником питания.

На чертеже представлено устройство для реализации способа.

Устройство содержит: источник питания 1, соединенный с детектором интенсивностей гамма-излучения 2, соединенным с входным усилителем 3, выходы которого соединены с АЦП 4 и с дискриминатором 5, к выходу которого подключен блок временных интервалов 6. Выход дискриминатора 5 соединен с входом АЦП 4, выходы которого соединены с ОЗУ 7 и с микроконтроллером 8. К другому выходу микроконтроллера 8 подключен ЦАП 9, выход которого соединен с входом входного усилителя 3. Третий выход микроконтроллера 8 соединен с другим ЦАП 11 и с источником питания 1, а четвертый выход - с кодеком 10, к которому подсоединен каротажный кабель 12, передающий сигналы на наземный регистратор компьютера (не показан).

Суть способа целесообразно раскрыть в процессе работы устройства.

Функционирование устройства определяется тремя режимами: режим накопления спектра, режим восстановления нулевого уровня на выходе входного усилителя и режим информационного обмена с наземным компьютером каротажного регистратора.

В режиме накопления спектра импульсы с детектора интенсивностей гамма-излучения 2 (детектор) усиливаются входным усилителем 3, выполненным в виде преобразователя ток-напряжение, и подаются на дискриминатор 5 и на вход АЦП 4. С выхода дискриминатора 5 импульсы подаются на блок временных интервалов 6. Блок временных интервалов 6 формирует сигнал CONV запуска АЦП 4 на вершине импульса с выхода входного усилителя 3. После преобразования АЦП 4 выдает сигнал BUSY готовности данных и выставляет на шине Ai данные, пропорциональные энергии зарегистрированного кванта. Микроконтроллер 8 сигналом CS инкрементирует ячейку ОЗУ 7, адресом которой являются данные АЦП 4. В результате многократного повторения описанных выше операций в ОЗУ 7 накапливается информация, отражающая статистику регистрации квантов по 2i+1 уровням их энергий, т.е. амплитудно-временной спектр.

Источник питания 1 детектора 2 является стабилизированным источником с программируемым значением выходного напряжения. Программируя его на различные напряжения, имеется возможность менять коэффициент преобразования детектора, т.е. задавать и корректировать энергетическую шкалу спектрометрического тракта. Для настройки и управления выходным напряжением указанный источник содержит резисторы задания максимального и минимального значений напряжений и ЦАП 11, с помощью которого выходное напряжение можно программировать от минимального до максимального значения с шагом 1/256.

В режиме информационного обмена инициатором является компьютер каротажного регистратора, который для получения данных от скважинного устройства посылает к нему "Запрос", включающий в себя адрес скважинного устройства и данные для управления энергетической шкалой.

При приеме командного слова, кодек 10 проверяет его на соответствие признаку команды, совпадения адреса и бита паритета, после чего прерывает режим накопления на весь период информационного обмена. Микроконтроллер 8 считывает с кодека 10 данные для управления энергетической шкалой и отправляет их в программируемый источник питания 1 детектора 2, сопровождая сигналом WR_H. После этого микроконтроллер 8 последовательно считывает и передает через телеметрические узлы и каротажный кабель 12 в наземный регистратор слова данных Di из всех ячеек ОЗУ 7. Каждый раз после чтения очередной ячейки ОЗУ 7 эта ячейка обнуляется. После чтения последнего слова микроконтроллер 8 заканчивает обмен с наземным регистратором.

В режиме восстановления нулевого уровня на выходе входного усилителя микроконтроллер 8 запускает АЦП 4 в циклическом режиме через 10 мкс и в течение нескольких миллисекунд производит запись постоянной составляющей на выходе входного усилителя 3. После фильтрации данных микроконтроллер 8 программирует ЦАП 9, сопровождая сигналом WRN_N, который задает дополнительный ток на вход входного усилителя 3.

При этом с помощью АЦП4 оцифровывают сигнал с выхода усилителя 3, сравнивают его с эталонным кодом, пропорциональным нулевому сигналу, и в зависимости от его изменения производят подачу сигнала WR_N на ЦАП 9. Нулевой сигнал постоянно корректируют с помощью подачи дополнительного тока с ЦАП 9 на вход усилителя 3.

Таким образом производят в автоматическом режиме восстановление нулевого уровня на выходе входного усилителя, изменившегося из-за внешних условий.

В результате при обработке спектров, полученных после стабилизации энергетической шкалы по опорному сигналу (что известно из аналогов) и корректированной нулевой линии (заявленное решение), получаем идеальное соответствие номера спектрометрического тракта от энергии гамма-квантов во всем диапазоне.

После этого устройство переходит в режим накопления амплитудно-временного спектра. Время накопления спектра задается периодичностью обращения к прибору компьютера каротажного регистратора.

Похожие патенты RU2530471C1

название год авторы номер документа
СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ГАММА-КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ 2001
  • Черменский В.Г.
  • Велижанин В.А.
  • Хаматдинов Р.Т.
  • Саранцев С.Н.
RU2191413C1
УСТРОЙСТВО ДЛЯ ЛИТОЛОГО-ПЛОТНОСТНОГО ГАММА-ГАММА - КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ 2003
  • Велижанин В.А.
  • Саранцев С.Н.
  • Хаматдинов В.Р.
  • Черменский В.Г.
RU2249836C1
СПОСОБ ИМПУЛЬСНОГО НЕЙТРОННОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2003
  • Черменский В.Г.
  • Хаматдинов Р.Т.
  • Велижанин В.А.
  • Бортасевич В.С.
RU2254597C2
СПОСОБ ИМПУЛЬСНОГО НЕЙТРОННОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ 2004
  • Бортасевич В.С.
  • Хаматдинов Р.Т.
  • Черменский В.Г.
  • Велижанин В.А.
  • Саранцев С.Н.
RU2262124C1
Способ гамма-спектрометрии и гамма-спектрометр 1990
  • Кучурин Евгений Сергеевич
  • Гельд Владимир Давыдович
SU1803896A1
СПОСОБ ГАММА-СПЕКТРОМЕТРИИ 1997
  • Кучурин Е.С.
  • Шабалин Н.Я.
  • Каримов В.В.
  • Крысов А.А.
RU2159451C2
СПОСОБ НЕЙТРОННОГО АКТИВАЦИОННОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1993
  • Кучурин Е.С.
RU2073895C1
СПОСОБ И УСТРОЙСТВО РАДИОАКТИВНОГО КАРОТАЖА 1996
  • Кадисов Е.М.
  • Кадисов А.Е.
  • Калмыков Г.А.
  • Кащина Н.Л.
  • Миллер В.В.
  • Моисеев С.А.
RU2092876C1
СПЕКТРОМЕТРИЧЕСКИЙ СПОСОБ ИЗМЕРЕНИЯ ЯДЕРНЫХ ИЗЛУЧЕНИЙ И РЕАЛИЗУЮЩАЯ ЕГО СПЕКТРОМЕТРИЧЕСКАЯ СИСТЕМА 2002
RU2269798C2
СПОСОБ ИМПУЛЬСНОГО НЕЙТРОННОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Бортасевич Виктор Степанович
  • Хасаев Тимур Октаевич
  • Черменский Владимир Германович
  • Велижанин Виктор Алексеевич
RU2523770C1

Реферат патента 2014 года СПОСОБ РЕГИСТРАЦИИ ДАННЫХ РАДИОАКТИВНОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ

Использование: для количественного определения содержания радиоактивных элементов горных пород. Сущность изобретения заключается в том, что выполняют облучение исследуемой среды в скважине источником радиоактивного излучения, регистрацию интенсивностей гамма-излучения, усиление и оцифровку зарегистрированных сигналов, передачу их на поверхность и автоматическую стабилизацию энергетической шкалы, включающую восстановление нулевого уровня усиленного выходного сигнала, при этом осуществляют периодическое накопление зарегистрированных сигналов в виде амплитудных спектров, а восстановление нулевого уровня усиленного выходного сигнала производят в циклическом режиме, в начале каждого периода накопления амплитудных спектров. Технический результат: повышение точности определения энергии гамма-квантов. 2 н.п. ф-лы, 1 ил.

Формула изобретения RU 2 530 471 C1

1. Способ регистрации данных радиоактивного каротажа, содержащий облучение исследуемой среды в скважине источником радиоактивного излучения, регистрацию интенсивностей гамма-излучения, усиление и оцифровку зарегистрированных сигналов, передачу их на поверхность и автоматическую стабилизацию энергетической шкалы, включающую восстановление нулевого уровня усиленного выходного сигнала, отличающийся тем, что осуществляют периодическое накопление зарегистрированных сигналов в виде амплитудных спектров, а восстановление нулевого уровня усиленного выходного сигнала производят в циклическом режиме, в начале каждого периода накопления амплитудных спектров.

2. Устройство для регистрации данных радиоактивного каротажа, включающее детектор интенсивностей гамма-излучения, соединенный с высоковольтным преобразователем питания (источник питания) и с входным усилителем, выход которого соединен с аналого-цифровым преобразователем (АЦП), к выходам которого подключены микроконтроллер квантования и накопления спектра (микроконтроллер), и оперативно запоминающее устройство (ОЗУ), а также содержащее цифроаналоговый преобразователь (ЦАП), отличающееся тем, что один выход микроконтроллера соединен с ЦАП, выход которого соединен с входом входного усилителя, выход которого соединен с дискриминатором, выход которого соединен с блоком временных интервалов, который подключен к входу АЦП, а другой выход микроконтроллера соединен с другим ЦАП, выход которого соединен с источником питания.

Документы, цитированные в отчете о поиске Патент 2014 года RU2530471C1

СПОСОБ СПЕКТРОМЕТРИЧЕСКОГО ГАММА-КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ПРОВЕДЕНИЯ 2001
  • Черменский В.Г.
  • Велижанин В.А.
  • Хаматдинов Р.Т.
  • Саранцев С.Н.
RU2191413C1
Скважинный гамма-спектрометр 1982
  • Бухало О.П.
  • Дмитриев З.В.
  • Еременко В.К.
  • Ролик Е.И.
  • Федоров Р.Ф.
  • Старинский А.А.
SU1082154A1
Черменский В.Г., Аппаратурно-методический комплекс спектрометрического импульсного нейтронного гамма каротажа для определения текущей нефтенасыщенности эксплуатируемых залежей, Диссертация на соискание ученой степени доктора технических наук, Дубна, 2008, стр
Печь для непрерывного получения сернистого натрия 1921
  • Настюков А.М.
  • Настюков К.И.
SU1A1
СПОСОБ ОДНОВРЕМЕННОГО ИССЛЕДОВАНИЯ МЕТОДАМИ РАДИОАКТИВНОГО КАРОТАЖА И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Киргизов Дмитрий Иванович
  • Баженов Владимир Валентинович
  • Лифантьев Виктор Алексеевич
  • Воронков Лев Николаевич
  • Мухамадиев Рамиль Сафиевич
RU2427861C2
US 2005127282A1, 16.06.2005
US 4749859A, 07.06.1988

RU 2 530 471 C1

Авторы

Крысов Александр Андреевич

Мамлеев Тагир Сахабович

Даниленко Виталий Никифорович

Кондрашов Алексей Владимирович

Борисов Виктор Иванович

Борисова Любовь Константиновна

Гулимов Александр Викторович

Даты

2014-10-10Публикация

2013-05-13Подача