Область техники
Настоящее изобретение относится к области электротехники или электроники, в частности к цепи нагрева аккумуляторной батарей.
Уровень техники
Ввиду того, что автомобили вынуждены работать в сложных дорожных условиях и сложных условиях окружающей среды, либо некоторые электронные устройства используются в жестких условиях окружающей среды, то аккумуляторная батарея, которая служит блоком электропитания для автомобилей с электрическим приводом или электронных устройств, должна быть адаптирована к таким сложным условиям. Кроме того, помимо данных условий должны учитываться срок службы и динамика цикла зарядки/разрядки аккумуляторной батареи, особенно при использовании автомобилей с электрическим приводом или электронных устройств в низкотемпературной среде, причем такая аккумуляторная батарея должна обладать отличными характеристиками зарядки/разрядки в условиях низкой температуры и высокой входной/выходной мощностью.
В общем, в условиях низкой температуры сопротивление аккумуляторной батареи будет возрастать, и увеличится поляризация; таким образом, емкость аккумуляторной батареи будет снижаться.
Для сохранения емкости аккумуляторной батареи и улучшения характеристик зарядки/разрядки аккумуляторной батареи в условиях низкой температуры, настоящее изобретение обеспечивает цепь нагрева аккумуляторной батареи.
Сущность изобретения
Цель настоящего изобретения заключается в обеспечении цепи нагрева аккумуляторной батареи для решения проблемы уменьшенной емкости аккумуляторной батареи, вызванной повышенным сопротивлением и поляризацией аккумуляторной батареи в условиях низкой температуры.
Настоящее изобретение обеспечивает цепь нагрева аккумуляторной батареи, содержащую блок переключения, модуль управления переключением, демпфирующий элемент R1, схему накопления энергии и блок передачи энергии, причем схема накопления энергии соединена с аккумуляторной батареей и содержит элемент L1 накопления тока и элемент C1 накопления заряда, причем демпфирующий элемент R1 и блок переключения последовательно соединены со схемой накопления энергии;
модуль управления переключением соединен с блоком переключения и выполнен с возможностью управления включением/выключением блока переключения для управления протеканием энергии между аккумуляторной батареей и схемой накопления энергии;
блок передачи энергии соединен со схемой накопления энергии и выполнен с возможностью передачи энергии, содержащейся в схеме накопления энергии, к элементу накопления энергии, после включения и последующего выключения блока переключения.
Цепь нагрева, обеспеченная в настоящем изобретении, может улучшить характеристики зарядки/разрядки аккумуляторной батареи; кроме того, поскольку в цепи нагрева схема накопления энергии соединена с аккумуляторной батареей последовательно, то при нагреве батареи можно избежать проблемы безопасности, обусловленной сверхтоком в виде неисправностей и короткого замыкания блока переключения, благодаря наличию элемента накопления заряда, соединенного параллельно, и, таким образом, аккумуляторная батарея может быть эффективно защищена.
Кроме того, в настоящем изобретении блок передачи энергии обеспечен в цепи нагрева; при выключении блока переключения, блок передачи энергии может передавать энергию, содержащуюся в схеме накопления энергии, к другим элементам накопления энергии или подводить энергию другим устройствам, таким образом, блок передачи энергии обладает функцией повторного использования энергии.
Другие особенности и преимущества настоящего изобретения будут дополнительно раскрыты в вариантах реализации, представленных в приведенном ниже описании.
Краткое описание чертежей
Прилагаемые чертежи, представленные в качестве неотъемлемой части настоящего описания, обеспечены для дополнительного облегчения понимания настоящего изобретения и использованы в сочетании с вариантами реализации, представленными в приведенном ниже описании, для пояснения настоящего изобретения, однако они не должны рассматриваться как представляющие собой какое-либо ограничение настоящего изобретения. На чертежах:
на фиг.1 изображена принципиальная схема цепи нагрева аккумуляторной батареи, обеспеченной в настоящем изобретении;
на фиг.2 изображена принципиальная схема варианта реализации блока передачи энергии, показанного на фиг.1;
на фиг.3 изображена принципиальная схема варианта реализации блока электроподзарядки, показанного на фиг.2;
на фиг.4 изображена принципиальная схема варианта реализации DC-DC модуля, показанного на фиг.3;
на фиг.5 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.6 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.7 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.8 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.9 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.10 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.11 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.12 изображена принципиальная схема варианта реализации блока переключения, показанного на фиг.1;
на фиг.13 изображена принципиальная схема предпочтительного варианта реализации цепи нагрева аккумуляторной батареи, обеспеченной в настоящем изобретении;
на фиг.14 изображена принципиальная схема варианта реализации блока энергопотребления, показанного на фиг.13;
на фиг.15 изображена принципиальная схема варианта реализации цепи нагрева аккумуляторной батареи, обеспеченной в настоящем изобретении;
на фиг.16 представлена диаграмма импульсной последовательности формы волны, соответствующей цепи нагрева, показанной на фиг.15;
на фиг.17 изображена принципиальная схема варианта реализации цепи нагрева аккумуляторной батареи, обеспеченной в настоящем изобретении;
на фиг.18 представлена диаграмма импульсной последовательности формы волны, соответствующей цепи нагрева, показанной на фиг.17.
Подробное описание вариантов реализации
В приведенном ниже описании подробно раскрыты варианты реализации настоящего изобретения со ссылкой на прилагаемые чертежи. Следует понимать, что варианты реализации, приведенные в настоящем описании, приведены только для описания и пояснения настоящего изобретения и не должны рассматриваться в качестве ограничения настоящего изобретения.
Обращаем внимание: если иное не оговорено, при упоминании в тексте приведенного ниже описания, термин «модуль управления переключением» относится к любому контроллеру, который может выдавать команды управления (например, форма волны импульса) при заранее заданных условиях или в заранее заданные промежутки времени и, таким образом, управляет блоком переключения, соединенным с ним, для соответственно включения или выключения, например, модуль управления переключением может представлять собой программируемый логический контроллер;
при упоминании в тексте приведенного ниже описания термин «переключатель» относится к переключателю, обеспечивающему возможность управления включением/выключением посредством электрических сигналов или обеспечивающему возможность управления включением/выключением на основе характеристик элемента или компонента, то есть переключатель может представлять собой однонаправленный переключатель (например, переключатель, состоящий из двунаправленного переключателя и диода, присоединенного последовательно, который может включаться в одном направлении), или двунаправленный переключатель (например, полевой транзистор со структурой металл-оксид-полупроводник или биполярный транзистор с изолированным затвором с встречным диодом свободного хода);
при упоминании в тексте приведенного ниже описания термин «двунаправленный переключатель» относится к переключателю, который может включаться в двух направлениях, что может обеспечить возможность управления включением/выключением посредством электрических сигналов или обеспечить управление включения/выключения на основе характеристик элемента или компонента, например, двунаправленный переключатель может представлять собой полевой транзистор со структурой металл-оксид-полупроводник или биполярный транзистор с изолированным затвором с встречным диодом свободного хода;
при упоминании в тексте приведенного ниже описания термин «однонаправленный полупроводниковый элемент» относится к полупроводниковому элементу, который может включаться в одном направлении, например диод;
при упоминании в тексте приведенного ниже описания термин «элемент накопления заряда» относится к любому устройству, которое может осуществить накопление заряда, например конденсатор;
при упоминании в тексте приведенного ниже описания термин «элемент накопления тока» относится к любому устройству, которое может накапливать ток, например катушка индуктивности;
при упоминании в тексте приведенного ниже описания термин «прямое направление» относится к направлению, в котором энергия протекает от аккумуляторной батареи к схеме накопления энергии, а термин «обратное направление» относится к направлению, в котором энергия протекает от схемы накопления энергии к аккумуляторной батарее;
при упоминании в тексте приведенного ниже описания термин «аккумуляторная батарея» содержит батарею первичных элементов (например, сухая аккумуляторная батарея или щелочная аккумуляторная батарея и т.д.) и батарею вторичных элементов (например, ионно-литиевая батарея, никель-кадмиевая аккумуляторная батарея, никель-водородная батарея или свинцово-кислотная аккумуляторная батарея и т.д.);
при упоминании в тексте приведенного ниже описания термин «демпфирующий элемент» относится к любому устройству, которое препятствует протеканию тока и, таким образом, осуществляет энергопотребление, например сопротивление и т.д.;
при упоминании в тексте приведенного ниже описания термин «основной контур» относится к электрическому контуру, состоящему из аккумуляторной батареи и демпфирующего элемента, блока переключения и схемы накопления энергии, соединенных последовательно.
Особенно следует отметить, что ввиду наличия различных особенностей у различных типов аккумуляторных батарей, в настоящем изобретении «аккумуляторная батарея» может относиться к идеальной аккумуляторной батарее, которая не имеет внутреннего паразитного сопротивления и паразитной индуктивности или имеет очень низкое внутреннее паразитное сопротивление и паразитную индуктивность, или может относиться к комплекту батарей, имеющему внутреннее паразитное сопротивление и паразитную индуктивность;
таким образом, специалистам в данной области техники следует понимать, что если аккумуляторная батарея представляет собой идеальную аккумуляторную батарею, которая не имеет внутреннего паразитного сопротивления и паразитной индуктивности или имеет очень низкое внутреннее паразитное сопротивление и паразитную индуктивность, демпфирующий элемент R1 относится к демпфирующему элементу, внешнему по отношению к аккумуляторной батарее;
и элемент L1 накопления тока относится к элементу накопления тока, внешнему по отношению к аккумуляторной батарее;
если аккумуляторная батарея представляет собой комплект аккумуляторных батарей, имеющий внутреннее паразитное сопротивление и паразитную индуктивность, демпфирующий элемент R1 относится к демпфирующему элементу, внешнему по отношению к аккумуляторной батарее, или относится к паразитному сопротивлению в комплекте аккумуляторных батарей, аналогичным образом, элемент L2 накопления тока относится к элементу накопления тока, внешнему по отношению к аккумуляторной батарее, или относится к паразитной индуктивности в комплекте аккумуляторных батарей.
Для обеспечения нормального срока службы аккумуляторной батареи такая аккумуляторная батарея может быть нагрета в условиях низкой температуры, то есть при наступлении условия осуществления нагрева происходит управление цепью нагрева для начала нагрева аккумуляторной батареи;
при наступлении условия осуществления остановки нагрева происходит управление цепью нагрева для остановки нагрева.
При фактическом применении аккумуляторной батареи условие нагрева аккумуляторной батареи и условие остановки нагрева могут быть установлены согласно фактическим окружающим условиям, для обеспечения нормального выполнения зарядки/разрядки аккумуляторной батареи.
Для подогрева аккумуляторной батареи Е в низкотемпературной окружающей среде согласно фиг.1 настоящее изобретение обеспечивает цепь нагрева аккумуляторной батареи, содержащую блок 1 переключения, модуль 100 управления переключением, демпфирующий элемент R1, схему накопления энергии и блок передачи энергии, причем схема накопления энергии соединена с аккумуляторной батареей и содержит элемент L1 накопления тока и элемент C1 накопления заряда;
демпфирующий элемент R1 и блок 1 переключения соединены последовательно со схемой накопления энергии;
модуль 100 управления переключением соединен с блоком 1 переключения и выполнен с возможностью управления включением/выключением блока 1 переключения для управления протеканием энергии между аккумуляторной батареей и схемой накопления энергии;
блок передачи энергии соединен со схемой накопления энергии и выполнен с возможностью передачи энергии, содержащейся в схеме накопления энергии, к элементу накопления энергии после включения и последующего выключения блока 1 переключения.
При использовании технического решения по настоящему изобретению, при наступлении условия нагрева, модуль 100 управления переключением управляет включением блока 1 переключения, и, таким образом, аккумуляторная батарея E соединена со схемой накопления энергии последовательно для формирования электрического контура и может разряжаться через электрический контур (т.е. заряжать элемент C1 накопления заряда);
когда ток в контуре достигает нулевого значения в прямом направлении вслед за пиковым значением тока, элемент C1 накопления заряда начинает разряжаться через контур, т.е. заряжать аккумуляторную батарею E;
в процессе зарядки/разрядки аккумуляторной батареи E ток в электрическом контуре всегда проходит через демпфирующий элемент R1, независимо от того, протекает ли ток в прямом направлении или обратном направлении, и, таким образом, аккумуляторная батарея Е подогревается теплом, выработанным в демпфирующем элементе R1;
посредством управления временем включения/выключения блока 1 переключения можно осуществлять управление подогревом аккумуляторной батареей Е только в режиме разрядки или в обоих режимах, разрядки и зарядки.
При наступлении условия остановки нагрева модуль 100 управления переключением может управлять выключением блока 1 переключения и, таким образом, останавливать работу цепи нагрева.
Блок передачи энергии соединен со схемой накопления энергии и выполнен с возможностью передачи энергии в схеме накопления энергии к элементу накопления энергии после включения и последующего выключения блока 1 переключения для повторного использования энергии в схеме накопления энергии.
Элемент накопления энергии может представлять собой внешний конденсатор, низкотемпературную аккумуляторную батарею или электрическую сеть, или любое другое электрическое устройство.
Предпочтительно элемент накопления энергии представляет собой аккумуляторную батарею E, обеспеченную в настоящем изобретении.
Согласно фиг.2 блок передачи энергии содержит блок 103 электроподзарядки, соединенный со схемой накопления энергии и выполненный с возможностью передачи энергии, содержащейся в схеме накопления энергии, к аккумуляторной батарее E после включения и затем выключения блока 1 переключения.
В техническом решении по настоящему изобретению, после выключения блока 1 переключения, энергия в схеме накопления энергии передается блоком передачи энергии к аккумуляторной батарее Е так, чтобы переданная энергия могла быть использована вторично после повторного включения блока 1 переключения, и, таким образом, повышается эффективность работы цепи нагрева.
В варианте реализации блока 103 электроподзарядки, показанном на фиг.3, блок 103 электроподзарядки содержит второй DC-DC модуль 3, соединенный соответственно с элементом C1 накопления заряда и аккумуляторной батареей E;
модуль 100 управления переключением также соединен со вторым DC-DC модулем 3 и выполнен с возможностью управления работой второго DC-DC модуля 3 для передачи энергии в элементе C1 накопления заряда к аккумуляторной батарее E.
Второй DC-DC модуль 3 представляет собой схему преобразования DC-DC (постоянного тока в постоянный ток) для передачи энергии, обычно используемую в данной области техники. Настоящее изобретение не ограничено конкретным схемным исполнением второго DC-DC модуля 3, при условии, что модуль может передавать энергию в элементе C1 накопления заряда. При необходимости специалисты в данной области техники смогут добавить, заменить или исключить элементы в схеме.
На фиг.4 показан вариант реализации второго DC-DC модуля 3, обеспеченный в настоящем изобретении. Согласно фиг.4 второй DC-DC модуль 3 содержит: двунаправленный переключатель S1, двунаправленный переключатель S2, двунаправленный переключатель S3, двунаправленный переключатель S4, третий трансформатор T3, элемент L4 накопления тока и четыре однонаправленных полупроводниковых элемента. В данном варианте реализации двунаправленный переключатель S1, двунаправленный переключатель S2, двунаправленный переключатель S3 и двунаправленный переключатель S4 представляют собой полевые транзисторы со структурой металл-оксид-полупроводник.
При этом контакт 1 и контакт 3 третьего трансформатора Т3 представляют собой точечные выводы;
отрицательные электроды двух однонаправленных полупроводниковых элементов среди четырех однонаправленных полупроводниковых элементов соединены в группу, и их точка соединения соединена с положительным полюсом аккумуляторной батареи E через элемент L4 накопления тока;
положительные электроды двух других однонаправленных полупроводниковых элементов соединены в группу, и их точка соединения соединена с отрицательным полюсом аккумуляторной батареи E;
кроме того, точки соединения между группами соединены соответственно с контактом 3 и контактом 4 третьего трансформатора T3 и, таким образом, формируют мостовую цепь выпрямителя.
Причем электрод истока двунаправленного переключателя S1 соединен с электродом стока двунаправленного переключателя S3, электрод истока двунаправленного переключателя S2 соединен с электродом стока двунаправленного переключателя S4, электроды стока двунаправленного переключателя S1 и двунаправленного переключателя S2 соответственно соединены с положительным концом элемента C1 накопления заряда, электроды истока двунаправленного переключателя S3 и двунаправленного переключателя S4 соответственно соединены с отрицательным концом элемента C1 накопления заряда; таким образом формируется полная мостовая схема.
В полной мостовой схеме двунаправленный переключатель S1 и двунаправленный переключатель S2 составляют верхнее плечо мостовой схемы, а двунаправленный переключатель S3 и двунаправленный переключатель S4 составляют нижнее плечо мостовой схемы;
контакт 1 третьего трансформатора T3 соединен с узловым соединением между двунаправленным переключателем S1 и двунаправленным переключателем S3, а контакт 2 третьего трансформатора T3 соединен с узловым соединением между двунаправленным переключателем S2 и двунаправленным переключателем S4.
Причем управление соответственно включением и выключением двунаправленного переключателя S1, двунаправленного переключателя S2, двунаправленного переключателя S3 и двунаправленного переключателя S4 осуществляет модуль 100 управления переключением.
Далее будет описан процесс работы DC-DC модуля 3:
1. После выключения блока 1 переключения модуль 100 управления переключением одновременно управляет включением двунаправленного переключателя S1 и двунаправленного переключателя S4 для образования фазы A;
модуль 100 управления переключением управляет одновременным включением двунаправленного переключателя S2 и двунаправленного переключателя S3 для образования фазы B. Таким образом, посредством управления поочередного включения фазы A и фазы В формируется полная мостовая схема;
2. При работе полной мостовой схемы энергия элемента C1 накопления заряда передается аккумуляторной батарее E через третий трансформатор T3 и выпрямительную схему;
выпрямительная схема преобразовывает входящий переменный ток в постоянный и выдает постоянный ток аккумуляторной батарее E для осуществления электроподзарядки.
Для предотвращения зарядки аккумуляторной батареи E элементом C1 накопления заряда при низкой температуре и для гарантированного обеспечения выполнения зарядки/разрядки аккумуляторной батареи E, в предпочтительном варианте реализации цепи нагрева, обеспеченной в настоящем изобретении, модуль 100 управления переключением выполнен с возможностью управления включением/выключением блока 1 переключения для управления протеканием энергии только от аккумуляторной батареи Е к схеме накопления энергии, тем самым предотвращая зарядку аккумуляторной батареи E элементом C1 накопления заряда.
В варианте реализации, в котором энергия протекает только от аккумуляторной батареи E к схеме накопления энергии, модуль 100 управления переключением выполнен с возможностью управления выключением блока 1 переключения при достижении или до достижения током, протекающим через блок 1 переключения, нулевого значения после включения блока 1 переключения, при условии управления протеканием тока только от аккумуляторной батареи E к элементу C1 накопления заряда.
Для управления протеканием энергии только от аккумуляторной батареи E к элементу C1 накопления заряда, в варианте реализации настоящего изобретения, показанном на фиг.5, блок 1 переключения содержит переключатель K1 и однонаправленный полупроводниковый элемент D1, причем переключатель K1 и однонаправленный полупроводниковый элемент D1 соединены друг с другом последовательно, а затем последовательно подключены в схему накопления энергии;
модуль 100 управления переключением соединен с переключателем K1 и выполнен с возможностью управления включением/выключением блока 1 переключения путем управления включением/выключением переключателя K1.
Посредством последовательного подключения однонаправленного полупроводникового элемента D1 в схеме, противоток энергии от элемента C1 накопления заряда может быть предотвращен и, таким образом, можно избежать зарядки аккумуляторной батареи Е в случае неисправности переключателя K1.
Поскольку частота падения силы тока очень высока при выключении переключателя K1, на элементе L1 накопления тока будет индуцироваться высокое перенапряжение, которое может стать причиной повреждения переключателя K1, так как ток и напряжение выходят за пределы диапазона безопасной работы. Таким образом, предпочтительно модуль 100 управления переключением выполнен с возможностью управления выключением переключателя K1 при достижении тока, протекающего через блок 1 переключения, нулевого значения после включения блока 1 переключения.
Для повышения эффективности нагрева, в другом варианте реализации настоящего изобретения, показанном на фиг.6, модуль 100 управления переключением предпочтительно выполнен с возможностью управления выключением блока 1 переключения до достижения током, протекающим через блок 1 переключения, нулевого значения после включения блока 1 переключения;
блок 1 переключения содержит однонаправленный полупроводниковый элемент D9, однонаправленный полупроводниковый элемент D10, переключатель K2, демпфирующий элемент R4 и элемент C3 накопления заряда, причем однонаправленный полупроводниковый элемент D9 и переключатель K2 соединены последовательно в схеме накопления энергии, демпфирующий элемент R4 и элемент накопления заряда C3 соединены последовательно и затем присоединены параллельно переключателю K2;
однонаправленный полупроводниковый элемент D10 присоединен параллельно демпфирующему элементу R4 и выполнен с возможностью переноса тока к элементу L1 накопления тока при выключении переключателя K2;
модуль 100 управления переключением соединен с переключателем K2 и выполнен с возможностью управления включением/выключением блока 1 переключения посредством управления включением/выключением переключателя K2.
Однонаправленный полупроводниковый элемент D10, демпфирующий элемент R4 и элемент C3 накопления заряда образуют контур поглощения, который выполнен с возможностью снижения частоты падения силы тока в схеме накопления энергии при выключении переключателя K2. Таким образом, при выключении переключателя K2 индуцированное напряжение, выработанное на элементе L1 накопления тока, будет побуждать включение однонаправленного полупроводникового элемента D10 и обеспечивает возможность свободного протекания тока с помощью элемента C3 накопления заряда для снижения частоты изменения тока в элементе L1 накопления тока и подавления индуцированного напряжения на элементе L1 накопления тока, для обеспечения напряжения на переключателе K2 в пределах безопасного рабочего диапазона. При повторном включении переключателя K2 энергия, сохраненная в элементе C3 накопления заряда, может потребляться через демпфирующий элемент R4.
Для повышения эффективности работы цепи нагрева потоком энергии можно управлять в одну сторону и другую сторону между аккумуляторной батареей E и схемой накопления энергии для использования протекания тока через демпфирующий элемент R1 в прямом направлении и в обратном направлении для обеспечения возможности нагревания.
Следовательно, в предпочтительном варианте реализации цепи нагрева, обеспеченной в настоящем изобретении, модуль 100 управления переключением выполнен с возможностью управления включением/выключением блока 1 переключения так, чтобы энергия протекала в одну сторону и другую сторону между аккумуляторной батареей E и схемой накопления энергии при установлении блока 1 переключения в положение «включено».
Для обеспечения возможности потока энергии в одну сторону и другую сторону между аккумуляторной батареей E и схемой накопления энергии, в варианте реализации настоящего изобретения блок 1 переключения представляет собой двунаправленный переключатель K3;
согласно фиг.7 модуль 100 управления переключением управляет включением/выключением двунаправленного переключателя K3, т.е. при необходимости нагрева аккумуляторной батареи E можно управлять включением двунаправленного переключателя K3, когда нагрев необходимо приостановить или он не требуется, то можно управлять выключением двунаправленного переключателя K3.
Использование отдельного двунаправленного переключателя K3 для реализации блока 1 переключения может упростить схему, уменьшить отпечаток системы и облегчить реализацию;
тем не менее, для выполнения отсечки обратного тока в настоящем изобретении дополнительно обеспечен следующий предпочтительный вариант реализации блока 1 переключения.
Предпочтительно блок 1 переключения содержит первое однонаправленное ответвление, выполненное с возможностью обеспечения потока энергии от аккумуляторной батареи E к схеме накопления энергии, и второе однонаправленное ответвление, выполненное с возможностью обеспечения потока энергии от схемы накопления энергии к аккумуляторной батарее E;
причем модуль 100 управления переключением соединен с любым или обоими из первого однонаправленного ответвления и второго однонаправленного ответвления для управления включением/выключением соединенных ответвлений.
При необходимости нагрева аккумуляторной батареи можно управлять включением первого однонаправленного ответвления и второго однонаправленного ответвления;
при необходимости приостановки нагрева можно управлять выключением любого или обоих из первого однонаправленного ответвления и второго однонаправленного ответвления;
при отсутствии необходимости нагрева можно управлять выключением обоих из первого однонаправленного ответвления и второго однонаправленного ответвления. Предпочтительно оба из первого однонаправленного ответвления и второго однонаправленного ответвления находятся под управлением модуля 100 управления переключением;
таким образом можно гибко осуществлять отсечку потока энергии в прямом направлении и обратном направлении.
В другом варианте реализации блока 1 переключения, показанном на фиг.8, блок 1 переключения может содержать двунаправленный переключатель K4 и двунаправленный переключатель K5, причем двунаправленный переключатель K4 и двунаправленный переключатель K5 соединены последовательно противоположно друг другу для образования первого однонаправленного ответвления и второго однонаправленного ответвления;
модуль 100 управления переключением соединен с двунаправленным переключателем K4 и двунаправленным переключателем K5, соответственно, для управления включением/выключением первого однонаправленного ответвления и второго однонаправленного ответвления посредством управления включением/выключением двунаправленного переключателя K4 и двунаправленного переключателя K5.
При необходимости нагрева аккумуляторной батареи E можно управлять включением двунаправленных переключателей K4 и K5;
при необходимости приостановки нагрева можно управлять выключением любого или обоих из двунаправленного переключателя K4 и двунаправленного переключателя K5;
при отсутствии необходимости нагрева можно управлять выключением обоих из двунаправленного переключателя K4 и двунаправленного переключателя K5. При такой реализации блока 1 переключения можно отдельно управлять включением или выключением первого однонаправленного ответвления и второго однонаправленного ответвления, и, таким образом, можно гибко выполнять отсечку потока энергии в прямом направлении и обратном направлении в схеме.
В другом варианте реализации блока 1 переключения, показанном на фиг.9, блок 1 переключения может содержать переключатель K6, однонаправленный полупроводниковый элемент D11 и однонаправленный полупроводниковый элемент D12, причем переключатель K6 и однонаправленный полупроводниковый элемент D11 соединены друг с другом последовательно для формирования первого однонаправленного ответвления;
однонаправленный полупроводниковый элемент D12 формирует второе однонаправленное ответвление;
модуль 100 управления переключением соединен с переключателем K6 для управления включением/выключением первого однонаправленного ответвления посредством управления включением/выключением переключателя K6. В блоке 1 переключения, показанном на фиг.8, при необходимости нагрева, можно управлять включением переключателя K6;
когда нагрев не требуется, можно управлять выключением переключателя K6.
Хотя реализация блока 1 переключения, показанного на фиг.9, обеспечивает возможность двухстороннего потока энергии по отдельным ответвлениям, тем не менее, такая реализация не может обеспечить функцию отсечки потока энергии в обратном направлении. Настоящее изобретение дополнительно предлагает другой вариант реализации блока 1 переключения;
согласно фиг.10, блок 1 переключения может дополнительно содержать переключатель K7 во втором однонаправленном ответвлении, причем переключатель K7 соединен с однонаправленным полупроводниковым элементом D12 последовательно, модуль 100 управления переключением также соединен с переключателем K7 и выполнен с возможностью управления включением/выключением второго однонаправленного ответвления путем управления включением/выключением переключателя K7. Таким образом, в блоке 1 переключения, показанном на фиг.9, поскольку в обоих однонаправленных ответвлениях расположены переключатели (т.е. переключатель K6 и переключатель K7), то функция отсечки потока энергии обеспечена одновременно в прямом направлении и обратном направлении.
Предпочтительно блок 1 переключения может дополнительно содержать сопротивление, которое соединено последовательно с первым однонаправленным ответвлением/вторым однонаправленным ответвлением и выполнено с возможностью снижения тока в цепи нагрева для аккумуляторной батареи E и избегания повреждения аккумуляторной батареи E, вызванного в результате сверхтока в схеме. Например, сопротивление R6, соединенное последовательно с двунаправленным переключателем K4 и двунаправленным переключателем K5, может быть добавлено в блок 1 переключения, показанный на фиг.8, для получения другой реализации блока 1 переключения, показанной на фиг.11. На фиг.12 также показан вариант реализации блока 1 переключения, который получен путем последовательного соединения соответственно сопротивления R2 и сопротивления R3 в обоих однонаправленных ответвлениях в блоке 1 переключения, показанном на фиг.10.
В варианте реализации, в котором энергия в одну сторону и другую сторону протекает между аккумуляторной батареей Е и схемой накопления энергии, выключением блока 1 переключения можно управлять в любой момент времени по меньшей мере в одном цикле, другими словами, блок 1 переключения может выключаться в любое время, например блок 1 переключения может выключиться при протекании тока через блок 1 переключения в прямом направлении или обратном направлении и когда ток равен нолю или не равен нолю. Конкретная форма реализации блока 1 переключения может быть выбрана в зависимости от необходимого способа отсечки;
если необходима лишь отсечка протекания тока в прямом направлении, то может быть выбрана форма реализации блока 1 переключения, показанная на фиг.7 или фиг.9;
если необходима отсечка протекания тока в прямом направлении и в обратном направлении, то может быть выбран блок переключения с двумя управляемыми однонаправленными ответвлениями, показанный на фиг.8 или фиг.10.
Предпочтительно модуль 100 управления переключением выполнен с возможностью управления выключением блока 1 переключения, при достижении или после достижения током, протекающим через блок 1 переключения, нулевого значения после включения блока 1 переключения. Более предпочтительно модуль 100 управления переключением выполнен с возможностью управления выключением блока 1 переключения при достижении током/ протекающим через блок 1 переключения, нулевого значения после включения блока 1 переключения для того, чтобы минимизировать неблагоприятное воздействие на всю схему.
В варианте реализации настоящего изобретения эффективность работы цепи нагрева может быть увеличена путем передачи энергии, содержащейся в элементе C1 накопления заряда, напрямую аккумуляторной батарее E;
либо остающаяся энергия в элементе C1 накопления заряда может быть передана после потребления некоторого количества энергии в элементе C1 накопления заряда;
либо остающаяся энергия в элементе C1 накопления заряда может потребляться после передачи некоторого количества энергии, содержащейся в элементе C1 накопления заряда.
Таким образом, согласно фиг.13 цепь нагрева дополнительно содержит блок энергопотребления, который соединен с элементом C1 накопления заряда и выполнен с возможностью потребления энергии, содержащейся в элементе C1 накопления заряда, после включения и последующего выключения блока 1 переключения и до передачи энергии блоком передачи энергии, или потребления энергии в элементе C1 накопления заряда после передачи энергии блоком передачи энергии. Блок энергопотребления может быть объединен с вариантами реализации, представленными в приведенном выше описании, включая варианты реализации, в которых энергия протекает только от аккумуляторной батареи E к схеме накопления энергии, и варианты реализации, в которых энергия протекает в одну сторону и другую сторону между аккумуляторной батареей E и схемой накопления энергии.
Блок передачи энергии, показанный на фиг.13, соединен с аккумуляторной батареей E и выполнен с возможностью передачи энергии назад к аккумуляторной батарее E;
в качестве альтернативы, согласно приведенному выше описанию, блок передачи энергии может накапливать энергию в другой элемент накопления энергии.
В варианте реализации настоящего изобретения, показанном на фиг.14, блок энергопотребления содержит блок 101 управления напряжением, который соединен с элементом C1 накопления заряда и выполнен с возможностью преобразования значения напряжения на элементе C1 накопления заряда в предопределенное значение напряжения после включения и последующего выключения блока 1 переключения и до передачи энергии блоком передачи энергии, или потребления энергии в элементе C1 накопления энергии до передачи энергии блоком передачи энергии. При необходимости может быть установлена последовательность потребления и передачи энергии и такая последовательность не ограничена в настоящем изобретении. При необходимости может быть также задано предопределенное значение напряжения.
В варианте реализации настоящего изобретения, показанном на фиг.14, блок 101 управления напряжением содержит демпфирующий элемент R5 и переключатель K8, причем демпфирующий элемент R5 и переключатель K8 соединены друг с другом последовательно и затем присоединены параллельно элементу C1 накопления заряда;
модуль 100 управления переключением также соединен с переключателем K8 и выполнен с возможностью управления включением переключателя K8 после включения и последующего выключения блока 1 переключения. Таким образом, энергия в элементе C1 накопления заряда может потребляться через демпфирующий элемент R5.
Модуль 100 управления переключением может представлять собой отдельный контроллер, который, посредством установки внутренней программы, обеспечивает возможность управления включением/выключением различных внешних переключений;
либо модуль управления 100 переключением может представлять собой множество контроллеров, например, модуль 100 управления переключением может быть установлен соответственно для каждого внешнего переключателя; либо множество модулей 100 управления переключением может быть объединено в узел.
Настоящее изобретение не ограничивает формы реализации модуля 100 управления переключением.
Далее со ссылкой на фиг.15-18 будет кратко описан принцип работы вариантов реализации цепи нагрева для аккумуляторной батареи E. Следует отметить, что, хотя особенности и элементы настоящего изобретения описаны конкретно в отношении фиг.15-18, каждая особенность или элемент настоящего изобретения могут быть использованы отдельно без других особенностей и элементов, или могут быть использованы в сочетании или не в сочетании с другими особенностями и элементами. Варианты реализации цепи нагрева для аккумуляторной батареи E, обеспеченной в настоящем изобретении, не ограничены вариантами реализации, показанными на фиг.15-18. Кроме того, сеточная часть структуры волны указывает, что возбуждающие импульсы могут быть приложены к переключателю неоднократно в пределах периода, а ширина импульса при необходимости может быть отрегулирована.
В цепи нагрева для аккумуляторной батареи E, показанной на фиг.15, переключатель K1 и однонаправленный полупроводниковый элемент D1 составляют блок 1 переключения, схема накопления энергии содержит элемент L1 накопления тока и элемент C1 накопления заряда, демпфирующий элемент R1 и блок 1 переключения соединены последовательно со схемой накопления энергии, второй DC-DC модуль 3 составляет блок 103 электроподзарядки в блоке передачи энергии, модуль 100 управления переключением может управлять включением/выключением переключателя K1 и работой второго DC-DC модуля 3.
На фиг.16 представлена диаграмма импульсной последовательности формы волны, соответствующей цепи нагрева, показанной на фиг.15, причем VC1 указывает значение напряжения на элементе C1 накопления заряда, Imain указывает значение тока, проходящего через переключатель K1.
Процесс работы цепи нагрева, показанной на фиг.20, заключается в следующем:
a) При необходимости нагрева аккумуляторной батареи E модуль 100 управления переключением управляет включением переключателя K1 и, таким образом, аккумуляторная батарея Е разряжается через электрический контур, состоящий из переключателя K1, однонаправленного полупроводникового элемента D1 и элемента C1 накопления заряда, согласно временному интервалу t1, показанному на фиг.16;
при нулевом значении тока, проходящего через переключатель K1, модуль 100 управления переключением управляет выключением переключателя K1, согласно временному интервалу t2, показанному на фиг.16;
b) При выключении переключателя K1 модуль 100 управления переключением управляет запуском работы второго DC-DC модуля 3, элемент C1 накопления заряда преобразовывает переменный ток в постоянный ток и выдает постоянный ток аккумуляторной батарее E через второй DC-DC модуль 3 для осуществления электроподзарядки;
затем модуль 100 управления переключением управляет остановкой работы второго DC-DC модуля 3 согласно временному интервалу t2, показанному на фиг.16;
с) Повторение этапов a)-d) приводит к непрерывному подогреву аккумуляторной батареи E при одновременном ее разряде, до тех пор, пока аккумуляторная батарея E не будет соответствовать условию остановки нагрева.
В цепи нагрева для аккумуляторной батареи E, показанной на фиг.17, переключатель K6 и однонаправленный полупроводниковый элемент D11 (первое однонаправленное ответвление) соединены друг с другом последовательно и переключатель K7 и однонаправленный полупроводниковый элемент D12 (второе однонаправленное ответвление) соединены друг с другом последовательно для образования блока 1 переключения, схема накопления энергии содержит элемент L1 накопления тока и элемент C1 накопления заряда, демпфирующий элемент R1 и блок 1 переключения соединены последовательно со схемой накопления энергии, второй DC-DC модуль 3 образует блок 103 электроподзарядки, который передает энергию в элементе С1 накопления заряда назад к аккумуляторной батарее E, модуль 100 управления переключением может управлять включением/выключением переключателя K6 и переключателя K7 и работой второго DC-DC модуля 3.
На фиг.18 изображена диаграмма импульсной последовательности формы волны, соответствующей цепи нагрева, показанной на фиг.17, причем VC1 указывает значение напряжения на элементе C1 накопления заряда, Imain указывает значение тока, проходящего через переключатель K1.
Процесс работы цепи нагрева, показанной на фиг.17, заключается в следующем:
а) Модуль 100 управления переключением управляет включением переключателя K6 и переключателя K7 и, таким образом, схема накопления энергии начинает работать, согласно временному интервалу t1, показанному на фиг.18;
аккумуляторная батарея E разряжается в прямом направлении через переключатель K6, однонаправленный полупроводниковый элемент D11 и элемент C1 накопления заряда (согласно временному интервалу t1, показанному на фиг.18, т.е. положительный полупериод тока, протекающего через переключатель K1) и заряжается в обратном направлении через элемент C1 накопления заряда, переключатель K7 и однонаправленный полупроводник D12 (согласно временному интервалу t2, показанному на фиг.18, т.е. отрицательный полупериод тока, протекающего через переключатель K1);
b) Модуль 100 управления переключением управляет выключением переключателя K6 и переключателя K7 при достижении током в обратном направлении нулевого значения;
c) Модуль 100 управления переключением управляет началом работы второго DC-DC модуля 3, элемент C1 накопления заряда преобразовывает переменный ток в постоянный ток и выдает постоянный ток аккумуляторной батарее E через второй DC-DC модуль 3 для выполнения электроподзарядки;
затем модуль 100 управления переключением управляет прекращением работы второго DC-DC модуля 3, согласно временному интервалу t3, показанному на фиг.18;
d) Повторение этапов а)-с), непрерывный подогрев аккумуляторной батареи E при одновременном ее разряжении, пока аккумуляторная батарея E не будет соответствовать условию остановки нагрева.
Цепь нагрева, обеспеченная в настоящем изобретении, может повысить эффективность зарядки/разрядки аккумуляторной батареи;
кроме того, поскольку схема накопления энергии соединена с аккумуляторной батареей последовательно в цепи нагрева, то при нагреве аккумуляторной батареи можно избежать проблем безопасности, обусловленных сверхтоком, в виде неисправностей и короткого замыкания блока переключения, благодаря наличию элемента накопления заряда, соединенного последовательно, и, таким образом, аккумуляторная батарея может быть эффективно защищена.
Кроме того, поскольку в цепи нагрева по настоящему изобретению обеспечен блок передачи энергии, то, при выключении блока переключения, блок передачи энергии может предавать энергию, содержащуюся в схеме накопления энергии, другим элементам накопления энергии или подавать энергию другим устройствам;
таким образом, блок передачи энергии также имеет функцию повторного использования энергии.
Несмотря на то, что в приведенном выше описании со ссылкой на прилагаемые чертежи представлены некоторые предпочтительные варианты реализации настоящего изобретения, настоящее изобретение не ограничено особенностями таких вариантах реализации.
Специалисты в данной области техники смогут выполнить модификации и изменения технического решения настоящего изобретения, не отступая от сущности настоящего изобретения.
Тем не менее, все такие модификации и изменения должны считаться как попадающие в объем настоящего изобретения.
Кроме того, следует отметить, что конкретные технические особенности, описанные в приведенных выше вариантах реализации, могут быть объединены в любую подходящую форму, при условии отсутствия какого-либо конфликта.
Во избежание излишнего повторения возможные комбинации специально не описаны в настоящем изобретении. Кроме того, при необходимости различные варианты реализации настоящего изобретения могут быть свободно объединены, при условии, что такие комбинации не отступают от идеи и сущности настоящего изобретения.
Как бы то ни было, такие комбинации также должны рассматриваться как попадающие в объем настоящего изобретения.
название | год | авторы | номер документа |
---|---|---|---|
ЦЕПЬ НАГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ | 2011 |
|
RU2537968C2 |
ЦЕПЬ НАГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ | 2011 |
|
RU2537964C2 |
ЦЕПЬ НАГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ | 2011 |
|
RU2564521C2 |
ЦЕПЬ НАГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ | 2011 |
|
RU2528622C1 |
СИСТЕМА КОНТРОЛЯ РАБОТЫ ЭЛЕКТРОМОБИЛЯ | 2013 |
|
RU2585195C2 |
СИСТЕМА КОНТРОЛЯ РАБОТЫ ЭЛЕКТРОМОБИЛЯ | 2013 |
|
RU2569513C1 |
СИЛОВАЯ УСТАНОВКА ЭЛЕКТРОМОБИЛЯ, ЭЛЕКТРОМОБИЛЬ И СПОСОБ ОБОГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ ЭЛЕКТРОМОБИЛЯ | 2013 |
|
RU2589530C1 |
СИЛОВАЯ УСТАНОВКА ЭЛЕКТРОМОБИЛЯ, ЭЛЕКТРОМОБИЛЬ И СПОСОБ ОБОГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ ЭЛЕКТРОМОБИЛЯ | 2013 |
|
RU2600558C2 |
СИЛОВАЯ УСТАНОВКА ГИБРИДНОГО ЭЛЕКТРОМОБИЛЯ, ГИБРИДНЫЙ ЭЛЕКТРОМОБИЛЬ И СПОСОБ ОБОГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ ГИБРИДНОГО ЭЛЕКТРОМОБИЛЯ | 2013 |
|
RU2584331C1 |
СИЛОВАЯ УСТАНОВКА ЭЛЕКТРОМОБИЛЯ, ЭЛЕКТРОМОБИЛЬ И СПОСОБ ОБОГРЕВА АККУМУЛЯТОРНОЙ БАТАРЕИ ЭЛЕКТРОМОБИЛЯ | 2013 |
|
RU2611592C2 |
Изобретение относится к аккумуляторным батареям. Технический результат - повышение эффективности зарядки/разрядки аккумуляторной батареи, повышение безопасности при нагреве аккумуляторной батареи и обеспечении функции повторного использования энергии.
Цепь нагрева аккумуляторной батареи содержит блок переключения, модуль управления переключением, демпфирующий элемент R1, схему накопления энергии и блок передачи энергии, причем схема накопления энергии соединена с аккумуляторной батареей и содержит элемент L1 накопления тока и элемент C1 накопления заряда;
демпфирующий элемент R1 и блок переключения соединены последовательно со схемой накопления энергии;
модуль (100) управления переключением соединен с блоком переключения и выполнен с возможностью управления включением/выключением блока переключения для управления протеканием энергии между аккумуляторной батареей и схемой накопления энергии;
причем блок передачи энергии соединен со схемой накопления энергии и выполнен с возможностью передачи энергии в схеме накопления энергии к элементу накопления энергии после включения и последующего выключения блока переключения. 15 з.п. ф-лы, 18 ил.
1. Цепь нагрева аккумуляторной батареи, содержащая блок (1) переключения, модуль (100) управления переключением, демпфирующий элемент R1, схему накопления энергии и блок передачи энергии, причем
схема накопления энергии соединена с аккумуляторной батареей и содержит элемент L1 накопления тока и элемент C1 накопления заряда;
демпфирующий элемент R1 и блок (1) переключения соединены последовательно со схемой накопления энергии;
модуль (100) управления переключением соединен с блоком (1) переключения и выполнен с возможностью управления включением/выключением блока (1) переключения для управления протеканием энергии между аккумуляторной батареей и схемой накопления энергии; а
блок передачи энергии соединен со схемой накопления энергии и выполнен с возможностью передачи энергии в схеме накопления энергии к элементу накопления энергии после включения и последующего выключения блока (1) переключения.
2. Цепь нагрева по п.1, в которой демпфирующий элемент R1 представляет собой паразитное сопротивление в аккумуляторной батарее, а элемент L1 накопления тока представляет собой паразитную индуктивность в аккумуляторной батарее.
3. Цепь нагрева по п.2, в которой элемент накопления энергии представляет собой аккумуляторную батарею, блок передачи энергии содержит блок (103) электроподзарядки, соединенный со схемой накопления энергии и выполненный с возможностью передачи энергии в схеме накопления энергии к аккумуляторной батарее после включения и затем выключения блока (1) переключения;
блок (103) электроподзарядки содержит второй DC-DC модуль (3), соединенный соответственно с элементом C1 накопления заряда и аккумуляторной батареей;
модуль (100) управления переключением также соединен со вторым DC-DC модулем (3) и выполнен с возможностью передачи энергии в элементе С1 накопления заряда к аккумуляторной батарее посредством управления работой второго DC-DC модуля (3).
4. Цепь нагрева по п.2, в которой модуль (100) управления переключением выполнен с возможностью управления включением/выключением блока (1) переключения для управления протеканием энергии только от аккумуляторной батареи к схеме накопления энергии.
5. Цепь нагрева по п.4, в которой блок (1) переключения содержит переключатель K1 и однонаправленный полупроводниковый элемент D1, причем переключатель K1 и однонаправленный полупроводниковый элемент D1 соединены друг с другом последовательно и затем последовательно подсоединены в схеме накопления энергии;
модуль (100) управления переключением соединен с переключателем K1 и выполнен с возможностью управления включением/выключением блока (1) переключения посредством управления включением/выключением переключателя K1.
6. Цепь нагрева по п.4, в которой модуль (100) управления переключением выполнен с возможностью управления выключением блока (1) переключения при достижении или до достижения током, протекающим через блок (1) переключения, нулевого значения после включения блока (1) переключения.
7. Цепь нагрева по п.6, в которой модуль (100) управления переключением выполнен с возможностью управления выключением блока (1) переключения до достижения током, протекающим через блок (1) переключения, нулевого значения после включения блока (1) переключения; причем
блок (1) переключения содержит однонаправленный полупроводниковый элемент D9, однонаправленный полупроводниковый элемент D10, переключатель K2, сопротивление R4 и элемент C3 накопления заряда;
однонаправленный полупроводниковый элемент D9 и переключатель K2 соединены последовательно в схеме накопления энергии, сопротивление R4 и элемент C3 накопления заряда соединены друг с другом последовательно и затем присоединены параллельно переключателю K2;
однонаправленный полупроводниковый элемент D10 соединен параллельно демпфирующему элементу R4 и выполнен с возможностью поддержания тока, протекающего через элемент L1 накопления тока, при выключении переключателя K2;
модуль (100) управления переключением соединен с переключателем K2 и выполнен с возможностью управления включением/выключением блока (1) переключения посредством управления включением/выключением переключателя K2.
8. Цепь нагрева по п.2, в которой модуль (100) управления переключением выполнен с возможностью управления включением/выключением блока (1) переключения, так что энергия протекает в одну сторону и другую сторону между аккумуляторной батареей и схемой накопления энергии при включении блока (1) переключения.
9. Цепь нагрева по п.8, в которой блок (1) переключения представляет собой двунаправленный переключатель K3.
10. Цепь нагрева по п.8, в которой блок (1) переключения содержит первое однонаправленное ответвление, выполненное с возможностью обеспечения потока энергии от аккумуляторной батареи к схеме накопления энергии, и второе однонаправленное ответвление, выполненное с возможностью обеспечения потока энергии от схемы накопления энергии к аккумуляторной батарее; причем
модуль (100) управления переключением соединен с любым или с обоими из первого однонаправленного ответвления и второго однонаправленного ответвления и выполнен с возможностью управления включением/выключением блока (1) переключения посредством управления включением/выключением соединенных ответвлений.
11. Цепь нагрева по п.10, в которой блок (1) переключения содержит двунаправленный переключатель K4 и двунаправленный переключатель K5, причем двунаправленный переключатель K4 и двунаправленный переключатель K5 соединены последовательно противоположно друг другу для формирования первого однонаправленного ответвления и второго однонаправленного ответвления; а
модуль (100) управления переключением соединен соответственно с двунаправленным переключателем K4 и двунаправленным переключателем K5 и выполнен с возможностью управления включением/выключением первого однонаправленного ответвления и второго однонаправленного ответвления посредством управления включением/выключением двунаправленного переключателя K4 и двунаправленного переключателя K5.
12. Цепь нагрева по п.10, в которой блок (1) переключения содержит переключатель K6, однонаправленный полупроводниковый элемент D11 и однонаправленный полупроводниковый элемент D12, причем
переключатель K6 и однонаправленный полупроводниковый элемент D11 соединены друг с другом последовательно для создания первого однонаправленного ответвления;
однонаправленный полупроводниковый элемент D12 составляет второе однонаправленное ответвление;
модуль (100) управления переключением соединен с переключателем K6 и выполнен с возможностью управления включением/выключением первого однонаправленного ответвления посредством управления включением/выключением переключателя K6.
13. Цепь нагрева по п.12, в которой блок (1) переключения дополнительно содержит переключатель K7 во втором однонаправленном ответвлении, который последовательно соединен с однонаправленным полупроводниковым элементом D12; причем
модуль (100) управления переключением дополнительно соединен с переключателем K7 и выполнен с возможностью управления включением/выключением второго однонаправленного ответвления посредством управления включением/выключением переключателя K7.
14. Цепь нагрева по п.8, в которой модуль (100) управления переключением выполнен с возможностью управления выключением блока (1) переключения при достижении или после достижения током, протекающим через блок (1) переключения, нулевого значения после включения блока (1) переключения.
15. Цепь нагрева по любому из пп.1-14, дополнительно содержащая блок энергопотребления, соединенный с элементом C1 накопления заряда и выполненный с возможностью потребления энергии в элементе C1 накопления заряда после включения и последующего выключения блока (1) переключения и до выполнения передачи энергии блоком передачи энергии, или потребления энергии в элементе C1 накопления заряда после выполнения передачи энергии блоком передачи энергии; причем
блок энергопотребления содержит блок (101) управления напряжением, который соединен с элементом C1 накопления заряда и выполнен с возможностью преобразования значения напряжения на элементе C1 накопления заряда в предопределенное значение напряжения после включения и затем выключения блока (1) переключения и до выполнения передачи энергии блоком передачи энергии, или потребления энергии в элементе C1 накопления заряда после выполнения передачи энергии блоком передачи энергии.
16. Цепь нагрева по п.15, в которой блок (101) управления напряжением содержит демпфирующий элемент R5 и переключатель K8, причем демпфирующий элемент R5 и переключатель K8 соединены друг с другом последовательно и затем присоединены параллельно элементу С1 накопления заряда; причем
модуль (100) управления переключением дополнительно соединен с переключателем K8 и выполнен с возможностью управления включением переключателя K8 после управления включением и затем выключением блока (1) переключения.
АККУМУЛЯТОРНАЯ БАТАРЕЯ | 1997 |
|
RU2122262C1 |
СПОСОБ ЭКСПЛУАТАЦИИ НИКЕЛЬ-ВОДОРОДНОЙ АККУМУЛЯТОРНОЙ БАТАРЕИ И АККУМУЛЯТОРНАЯ БАТАРЕЯ ДЛЯ ЕГО РЕАЛИЗАЦИИ | 2008 |
|
RU2366041C1 |
СИСТЕМА ЗАЖИГАНИЯ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | 2002 |
|
RU2227843C2 |
Ленточный транспортер для стеблей растений | 1932 |
|
SU29408A1 |
US6072301 A, 06.06 | |||
ЩИТОВОЙ ДЛЯ ВОДОЕМОВ ЗАТВОР | 1922 |
|
SU2000A1 |
US5990661 A, 23.11.1999 |
Авторы
Даты
2014-10-20—Публикация
2011-05-20—Подача