Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в радиолокационных станциях различного назначения, станциях радиосвязи, использующих два далеко разнесенных частотных диапазона, например сантиметровый и миллиметровый диапазоны волн.
Известна малозаметная СВЧ антенна, состоящая из плоского отражателя с пазами квадратного сечения различной глубины и первичного облучателя (Журнал «Информация и безопасность», 2005 г., №2 стр.161÷163). Недостатками такой антенны являются работа только на одной фиксированной частоте и большая трудоемкость изготовления, обусловленная механообработкой большого количества пазов и необходимостью выполнения пазов с высокой точностью.
Наиболее близкой по технической сущности к заявляемой антенне является рефлекторная антенна Френеля (Патент Германии №DE 3801301 А1, H01Q 15/23), выбранная в качестве прототипа.
Антенна-прототип содержит зонную поверхность, образованную последовательно расположенными непрозрачными (отражающими) и прозрачными (пропускающими) для электромагнитной волны кольцевыми зонами, ограниченными концентрическими окружностями, радиусы которых определяются из соотношения
где rn - радиус n-й окружности, f - фокусное расстояние, λ - рабочая длина волны в свободном пространстве, при этом зонная поверхность расположена на одной стороне диэлектрического слоя толщиной приблизительно
Недостатком прототипа является невозможность его работы на двух существенно разнесенных частотных диапазонах.
Технический результат от использования заявленного изобретения заключается в возможности работы рефлекторной антенны Френеля в двух существенно разнесенных частотных диапазонах волн (например, в сантиметровом и коротковолновой части миллиметрового диапазонов волн) при использовании одного излучающего раскрыва и в обеспечении в обоих частотных диапазонах волн характеристик диаграмм направленности, близких к предельным.
Указанный технический результат достигается тем, что в рефлекторную антенну Френеля, содержащую так же, как и прототип, первичный облучатель, зонную поверхность, состоящую из непрозрачных (отражающих) и прозрачных (пропускающих) кольцевых зон, диэлектрический слои толщиной равной приблизительно
Из известного уровня техники не выявлены решения, имеющие признаки, совпадающие с отличительными признаками предлагаемого технического решения.
Поэтому можно считать, что предложенное техническое решение соответствует условию изобретательского уровня.
Сущность изобретения поясняется чертежами, где на:
Фиг.1 представлено схематическое изображение предлагаемой рефлекторной антенны Френеля для случая, когда вектор электрического поля
Фиг.2 представлено схематическое изображение зонной поверхности прототипа для нижней рабочей частоты,
Фиг.3 представлено схематическое изображение зонной поверхности прототипа для верхней рабочей частоты,
Фиг.4а приведены расчетные диаграммы направленности в Н-плоскости при работе рефлекторной антенны Френеля на нижней частоте рабочего диапазона волн прототипа (зеленая линия) и предлагаемого устройства (красная линия),
Фиг.4б приведены расчетные диаграммы направленности в Е-плоскости при работе рефлекторной антенны Френеля на нижней частоте рабочего диапазона волн прототипа (зеленая линия) и предлагаемого устройства (красная линия),
Фиг.5а приведены расчетные диаграммы направленности в Н- плоскости при работе рефлекторной антенны Френеля на верхней частоте рабочего диапазона волн - прототипа (зеленая линия) и предлагаемого устройства (красная линия),
Фиг.5б приведены расчетные диаграммы направленности в Е-плоскости при работе рефлекторной антенны Френеля на верхней частоте рабочего диапазона волн прототипа (зеленая линия) и предлагаемого устройства (красная линия).
Предлагаемая рефлекторная антенна Френеля (Фиг.1) содержит первичный облучатель 1, формирующий сферические электромагнитные волны на двух существенно разнесенных частотных диапазонах волн, причем направление векторов электрического поля для нижней
Предлагаемая рефлекторная антенна Френеля работает следующим образом. При падении сферической электромагнитной волны от расположенного в фокусе О первичного облучателя 1 на нижней рабочей частоте (например, сантиметрового диапазона) с линейной, например горизонтальной, поляризацией вектора электрического поля
При работе предлагаемой рефлекторной антенны Френеля на верхней рабочей частоте (например, в миллиметровом диапазоне волн) сферическая электромагнитная волна с вертикальной поляризацией вектора электромагнитного поля
При необходимости создания предлагаемой рефлекторной антенны Френеля с формированием диаграмм направленности на нижней частоте с вертикальной поляризации вектора
Вычислительный эксперимент, проведенный с заявленной рефлекторной антенной Френеля, обеспечивающей формирование диаграмм направленности на нижней рабочей частоте равной 9,375 ГГц (трехсантиметровый диапазон волн), и на верхней рабочей частоте равной 93,75 ГГц (трехмиллиметровый диапазон волн), с диаметром зонной поверхности 150 мм, фокусным расстоянием - f=100 мм, и поляризацией вектора электрического поля
- при работе рефлекторной антенны Френеля (Фиг.1) на частоте 9,375 ГГц диаграммы направленности в Е и Н плоскостях (красные линии) (Фиг.4а, б) заявленной антенны в области главного луча практически совпадают с диаграммами направленности, соответственно, в Е и Н плоскостях (зеленые линии) прототипа, соответствующего случаю Фиг.2. Отличия в диаграммах направленности наблюдаются только в области боковых лепестков на уровне ниже -14 дБ,
- при работе рефлекторной антенны Френеля (Фиг.1) на частоте 93,75 ГГц диаграммы направленности в Е и Н плоскостях (красные линии Фиг.5а, б) заявленной антенны в области главного луча совпадают с диаграммами направленности, соответственно, в Е и Н плоскостях (зеленные линии Фиг.5а, б) прототипа, соответствующего случаю Фиг.3. Отличия имеют место в области боковых лепестков на уровне ниже -22 дБ
Таким образом, технический результат от использования заявленной рефлекторной антенны Френеля по сравнению с прототипом заключается в обеспечении ее работы в двух существенно разнесенных частотных диапазонах волн при использовании одного излучающего раскрыва, при этом достигаются значения высокочастотных характеристик, близких к предельным.
Источники информации
1. Журнал «Информация и безопасность» ,2005 г., №2 стр.161÷163.
2. Патент Германии №DE 3801301 А1, H01Q 15/23 - прототип.
3. В.П. Шестопалов, А.А. Кириленко и др. «Резонансное рассеяние волн», том.1 «Дифракционные решетки», изд-во «Наукова думка», г.Киев 1985 г., стр.39, 58.
название | год | авторы | номер документа |
---|---|---|---|
ТРАНСРЕФЛЕКТОР | 2010 |
|
RU2439757C1 |
ДВУХДИАПАЗОННАЯ АНТЕННА | 2010 |
|
RU2435263C1 |
КОРОТКОВОЛНОВАЯ МОДУЛЬНАЯ БУКСИРУЕМАЯ НЕЖЕСТКАЯ АКТИВНАЯ ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА | 1998 |
|
RU2134469C1 |
ТВИСТРЕФЛЕКТОР | 2020 |
|
RU2761434C1 |
МИКРОПОЛОСКОВАЯ АНТЕННАЯ РЕШЁТКА Q-ДИАПАЗОНА | 2022 |
|
RU2793081C1 |
ВИБРАТОРНАЯ АНТЕННА | 2014 |
|
RU2571156C2 |
АНТЕННАЯ СИСТЕМА ПРОХОДНОГО ТИПА (ВАРИАНТЫ) | 2003 |
|
RU2245595C1 |
МНОГОЛУЧЕВАЯ НЕАПЛАНАТИЧЕСКАЯ ГИБРИДНАЯ ЗЕРКАЛЬНАЯ АНТЕННА | 2001 |
|
RU2181519C1 |
ЛИНЗОВАЯ АНТЕННА | 2013 |
|
RU2626559C2 |
ПЛОСКАЯ АНТЕННА | 1990 |
|
RU2016444C1 |
Изобретение относится к области радиотехники, в частности к антенной технике, и может быть использовано в радиолокационных станциях различного назначения, станциях радиосвязи, использующих два далеко разнесенных частотных диапазона, например сантиметровый и миллиметровый диапазоны волн. Технический результат - расширение функциональных возможностей за счет обеспечения работы антенны в двух разнесенных частотных диапазонах волн при использовании одного излучающего раскрыва и обеспечения в обоих частотных диапазонах волн характеристик диаграмм направленности, близких к предельным. Рефлекторная антенна Френеля содержит первичный облучатель 1, формирующий сферические электромагнитные волны на двух разнесенных частотных диапазонах волн, зонную поверхность 2, образованную набором непрозрачных кольцевых зон 7, 9, 11, 13, 15, полупрозрачных кольцевых зон 8, 10, 12, 14, 16, 17, 19, 21 и прозрачных кольцевых зон 18, 20, 22, при этом общее количество зон равно количеству кольцевых зон, определенных для верхней рабочей частоты, и расположенную на стороне диэлектрического слоя 3, облучаемой сферической электромагнитной волной, излучаемой первичным облучателем 1. На другой стороне диэлектрического слоя 3 расположена полупрозрачная решетка 4, состоящая из набора параллельно расположенных проводников, второй диэлектрический слой 5, расположенный между полупрозрачной решеткой 4 и металлическим экраном 6. 5 ил
Рефлекторная антенна Френеля, содержащая первичный облучатель, зонную поверхность, состоящую из непрозрачных и прозрачных кольцевых зон, диэлектрический слой толщиной равной , где λд - длина волны в диэлектрике, и металлический экран, отличающаяся тем, что первичный облучатель формирует сферические электромагнитные волны на двух существенно разнесенных частотных диапазонах волн, причем направление вектора электрического поля для нижней и для верхней разнесенных частот ортогонально, введен второй диэлектрический слой, при этом толщина первого диэлектрического слоя равна , где λдв - длина волны в диэлектрике, соответствующая верхней рабочей частоте, толщина второго диэлектрического слоя равна , где λдн - длина волны в диэлектрике, соответствующая нижней рабочей частоте, в зонную поверхность, расположенную на стороне первого диэлектрического слоя, облучаемой сферической электромагнитной волной, излучаемой первичным облучателем, дополнительно введены полупрозрачные кольцевые зоны, состоящие из набора параллельных проводников и ограниченных концентрическими окружностями, причем общее количество непрозрачных, полупрозрачных и прозрачных кольцевых зон и их ширина равны количеству и ширине кольцевых зон, определенных для верхней рабочей частоты, при этом одна часть полупрозрачных кольцевых зон имеет направление проводников, совпадающее с направлением вектора сферической электромагнитной волны нижней рабочей частоты, другая часть полупрозрачных кольцевых зон имеет направление проводников, совпадающее с направлением вектора сферической электромагнитной волны верхней рабочей частоты, на другой стороне первого диэлектрического слоя установлена полупрозрачная решетка, образованная набором параллельно расположенных проводников, причем направление проводников полупрозрачной решетки совпадает с направлением вектора электромагнитной волны верхней рабочей частоты, между полупрозрачной решеткой и экраном расположен второй диэлектрический слой.
DE 3801301, 30.11.1995 |
Авторы
Даты
2014-11-20—Публикация
2013-01-22—Подача