УСТРОЙСТВО ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ ПРИУСТЬЕВОЙ ЗОНЫ СКВАЖИН Российский патент 2014 года по МПК E21B36/00 E02D3/115 F25D31/00 

Описание патента на изобретение RU2534879C2

Изобретение относится к нефтяной и газовой промышленности и может быть использована при освоении и эксплуатации месторождений, расположенных в зоне многолетнемерзлых пород.

Известна конструкция нефтяных и газовых скважин с устройством для температурной стабилизации грунтов приустьевой зоны [1. МАТЕРИАЛЫ МЕЖДУНАРОДНОЙ НАУЧНО-ПРАКТИЧЕСКОЙ КОНФЕРЕНЦИИ ПО ИНЖЕНЕРНОМУ МЕРЗЛОТОВЕДЕНИЮ, посвященной ХХ-летию ООО НПО «Фундаментстройаркос», Тюмень 7-10 ноября 2011]. Устройство состоит из вертикальных охлаждающих труб (термостабилизаторов), работающих по принципу двухфазного естественно-конвективного устройства и расположенных одним или несколькими осесимметричными контурами вокруг эксплуатационной скважины. Охлаждающие трубы контура закольцованы (связаны между собой в верхней части общим коллектором) и подключены к общему конденсаторному блоку, который расположен на насыпи кустовой площадки вне пределов зоны проезда обслуживающей техники. Верхние торцы термостабилизаторов, а также все соединительные патрубки между конденсаторным блоком и термостабилизаторами заглублены в грунт и защищены от механических воздействий, возникающих при проезде и установке вблизи устья ремонтной и иной техники, обслуживающей скважину в период ее эксплуатации.

Экспериментальными исследованиями на модели известного устройства температурной стабилизации в лабораторных условиях установлено, что основной недостаток этого устройства - неустойчивость ее работы, связанная с неконтролируемым перераспределением хладагента между термостабилизаторами, объединенными в один контур. Эффективность работы системы падает из-за переполнения части труб и из-за непопадания жидкой фазы хладагента в другую часть труб.

Известна также система термостабилизации приустьевой зоны добывающей скважины, включающая установленные непосредственно за направлением скважины в трубках-контейнерах естественно-конвективные охлаждающие трубки малого диаметра с конденсаторами, выведенными на поверхность [2. RU № 2209934, МПК7 Е21B 36/00, 2003].

Основным недостатком этой системы является то, что она создает существенные помехи работам, проводимым на скважинах в процессе их эксплуатации и ремонта, так как конденсаторы препятствуют свободному подходу людей и техники к скважинам.

Наиболее близким к предлагаемому изобретению является система термостабилизации приустьевой зоны скважин, включающая совокупность вертикальных двухфазных термостабилизаторов, размещенных вокруг ствола скважины, причем конденсаторная часть каждого из них выведена на поверхность за пределами зоны проезда обслуживающей техники [3. RU №115820 U1, Е21B 36/00; F25D 31/00 (2006.01), 2012].

Недостатком этой системы является повышенный объем строительно-монтажных работ (в силу увеличения количества отдельных гидравлических магистралей).

Задачей, стоящей перед изобретением, является обеспечение возможности беспрепятственной эксплуатации и ремонта скважины при эффективной стабилизация теплового состояния приустьевой зоны скважины в многолетнемерзлых породах при сохранении приемлемого уровня трудозатрат.

Поставленная задача решается тем, что в устройстве для термостабилизации приустьевой зоны скважин, включающем совокупность размещенных вокруг устья скважины термостабилизаторов, соединенных через общий коллектор в верхней их части с конденсатором, нижняя часть термостабилизаторов также объединена общим коллектором.

Для получения прямоточного режима работы устройства общий коллектор нижней части термостабилизаторов соединен с конденсатором.

Для противоточного режима работы устройства достаточно соединения с конденсатором только верхнего коллектора.

Для обеспечения необходимой эффективности работы устройства при поддержании на термостабилизаторах температуры, не превышающей температуры оттаивания грунта t0, коэффициент оребрения и площадь поверхности неоребренного конденсатора подбираются такими, чтобы обеспечить выполнение соотношения:

K·Sn·(tf-t0)≤α·k·S0·(t0-ta)

где К - эффективный коэффициент теплопередачи от добываемого флюида к контуру охлаждения, учитывающий теплопроводность всех конструктивных элементов (слоев) устья скважины; Sn - площадь боковой поверхности направления; t0 - температура оттаивания грунтов; tf - температура добываемого флюида на устье; α - коэффициент теплообмена от наружного воздуха к стенке конденсатора; k - коэффициент оребрения конденсатора; S0 - площадь поверхности неоребренного конденсатора; ta - среднегодовая температура воздуха в районе размещения устройства.

Нижний коллектор превращает совокупность термостабилизаторов в систему сообщающихся сосудов, что исключает неконтролируемое переполнение или недостаточное заполнение отдельных трубок хладагентом в процессе работы устройства. Лабораторное моделирование работы такого устройства показывает высокую степень устойчивости циркуляции хладагента и достаточную эффективность охлаждения (Таблица 1).

Изобретение поясняется чертежами, где на фиг.1 приведена схема устройства для термостабилизации приустьевой зоны скважин с прямоточным режимом работы, а на фиг.2 - вид по A на фиг.1.

Устройство для термостабилизации приустьевой зоны скважин содержит совокупность размещенных вокруг устья (направления) скважины термостабилизаторов 1, соединенных через общий коллектор 2 в верхней их части с конденсатором 3. В нижней части термостабилизаторы 1 объединены общим коллектором 4.

Для получения прямоточного режима работы устройства общий коллектор 4 нижней части термостабилизаторов соединен с конденсатором 3. Для получения противоточного режима работы устройства достаточно соединения с конденсатором 3 только верхнего коллектора 2 (при соответствующей конструкции конденсатора).

При строительстве (монтаже) термостабилизаторы - вертикальные охлаждающие элементы 1, а также нижний и верхний коллекторы 4 и 2 (все выполнены из металлических трубок, причем коллекторы - в виде трубчатых тороидальных колец) стыкуются между собой герметично с помощью сварки и в собранном виде крепятся на внешней поверхности трубы - направления 5 путем точечной сварки с трубой и погружаются в грунт на заданную глубину вместе с направлением 5. Для соединения с конденсатором 3 верхний коллектор 2 и один из термостабилизаторов 1 снабжены горизонтальными отводами, которые на период строительства скважины оборудуются заглушками.

По завершении строительства и оборудования скважины горизонтальные отводы наращивают сваркой и стыкуют с общим конденсатором устройства (расположенным за пределами кустовой площадки).

Для повышенных тепловых потоков, которые имеют место вблизи устья скважины, целесообразно использование прямоточного охлаждающего устройства (поступающая в конденсатор парожидкостная смесь и вытекающий из него конденсат движутся в одном направлении, что обеспечивается соответствующей конструкцией конденсатора).

Размещение термостабилизаторов на внешней образующей направления создает один охлаждающий контур на устье скважины. С увеличением количества термостабилизаторов в контуре повышается равномерность теплосъема с устья. При этом требование полного теплоотвода с устья при обеспечении температуры на охлаждающих элементах, не превышающей температуры оттаивания грунтов t0, приводит к необходимости выполнения на конденсаторе условия, зависящего от коэффициента его оребрения и площади неоребренной поверхности:

где К - эффективный коэффициент теплопередачи от добываемого флюида к контуру охлаждения, учитывающий теплопроводность всех конструктивных элементов (слоев) устья скважины; Sn - площадь боковой поверхности направления; tf - температура добываемого флюида на устье; α - коэффициент теплообмена от наружного воздуха к стенке конденсатора; k - коэффициент оребрения конденсатора; S0 - площадь поверхности неоребренного конденсатора; tа - среднегодовая температура воздуха в районе размещения устройства. Соотношение (1) накладывает требования на конструктивные параметры конденсатора (площадь поверхности теплообмена, обеспечение необходимого значения коэффициента теплообмена и т.д.). Невыполнение указанного условия приведет к оттаиванию мерзлых пород в местах расположения термостабилизаторов.

При диаметре НКТ 100 мм, диаметре эксплуатационной колонны 168 мм, диаметре кондуктора 220 мм, диаметре направления 530 мм и его длине в 22,7 м и при заполнении межколонного пространства между НКТ и эксплуатационной колонной газом, а между эксплуатационной колонной и кондуктором и между кондуктором и направлением - цементом арктических марок коэффициент теплопередачи К оценивается величиной 2,3 Вт/м2 град. Площадь Sn - 18,9 м2. При среднегодовой скорости ветра в районе расположения устройства 5 м/с коэффициент α=23 Вт/м2 град. При температуре добываемого флюида на устье скважины tf=+20°C, и среднегодовой температуре воздуха минус 10°C для произведения k S0 получим ограничение: k S0≥3,7 м2.

Похожие патенты RU2534879C2

название год авторы номер документа
Способ комплексной термостабилизации многолетнемерзлых пород в зонах воздействия добывающих скважин неоком-юрских залежей 2021
  • Денисевич Екатерина Владимировна
  • Микляева Евгения Сергеевна
  • Ткачева Екатерина Владимировна
  • Ухова Юлия Александровна
  • Голубин Станислав Игоревич
  • Савельев Константин Николаевич
  • Аврамов Александр Владимирович
RU2779073C1
СПОСОБ СТАБИЛИЗАЦИИ СИСТЕМЫ СКВАЖИНА-ПОРОДЫ В КРИОЛИТОЗОНЕ 2002
  • Дубина М.М.
  • Попов А.П.
  • Штоль В.Ф.
RU2209934C1
СПОСОБ ТЕПЛОИЗОЛЯЦИИ УСТЬЕВОЙ ЗОНЫ ДОБЫВАЮЩЕЙ СКВАЖИНЫ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ 2003
  • Гасумов Рамиз Алиджавад Оглы
  • Шляховой Д.С.
  • Кулигин А.В.
  • Шляховой С.Д.
  • Пищухин В.М.
RU2247225C1
Способ установки термостабилизаторов в проветриваемом подполье эксплуатируемых зданий 2016
  • Гвоздик Виктор Иванович
  • Иванов Владислав Николаевич
RU2627793C1
СПОСОБ ТЕПЛОИЗОЛЯЦИИ УСТЬЕВОЙ ЗОНЫ ДОБЫВАЮЩЕЙ СКВАЖИНЫ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Чугунов Л.С.
  • Ермилов О.М.
  • Попов А.П.
  • Березняков А.И.
  • Тер-Саакян Ю.Г.
  • Решетников Л.Н.
  • Кононов В.И.
  • Фесенко С.С.
RU2127356C1
ТЕРМОСТАБИЛИЗАТОР ГРУНТОВ 2016
  • Вельчев Семен Петрович
  • Вельчев Андрей Семенович
  • Чанышев Ринат Риянович
RU2661167C2
СПОСОБ ОПРЕДЕЛЕНИЯ ОПТИМАЛЬНОГО РЕЖИМА ЭКСПЛУАТАЦИИ СКВАЖИНЫ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ 1999
  • Кононов В.И.
  • Березняков А.И.
  • Смолов Г.К.
  • Забелина Л.С.
  • Олиневич Г.В.
  • Попов А.П.
  • Осокин А.Б.
  • Салихов З.С.
RU2170335C2
СПОСОБ СТРОИТЕЛЬСТВА И УСТРОЙСТВА СВАЙ В ЗОНАХ ВЕЧНОЙ МЕРЗЛОТЫ С ИСПОЛЬЗОВАНИЕМ ТЕРМОСТАБИЛИЗАЦИОННЫХ МУФТ 2023
  • Евсеев Илья Антонович
  • Крупников Антон Владимирович
  • Шалай Виктор Владимирович
RU2818341C1
СПОСОБ ТЕРМОСТАБИЛИЗАЦИИ МНОГОЛЕТНЕМЕРЗЛЫХ ГРУНТОВ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2015
  • Ревель-Муроз Павел Александрович
  • Лисин Юрий Викторович
  • Сощенко Анатолий Евгеньевич
  • Суриков Виталий Иванович
  • Татауров Сергей Борисович
RU2620664C1
Способ герметизации заколонных пространств обсадных колонн скважин в условиях распространения низкотемпературных пород 2022
  • Полозков Ким Александрович
  • Астафьев Дмитрий Александрович
  • Полозков Александр Владимирович
  • Иванов Герман Анатольевич
  • Сутырин Александр Викторович
  • Санников Сергей Григорьевич
  • Люгай Антон Дмитриевич
RU2792859C1

Иллюстрации к изобретению RU 2 534 879 C2

Реферат патента 2014 года УСТРОЙСТВО ДЛЯ ТЕРМОСТАБИЛИЗАЦИИ ПРИУСТЬЕВОЙ ЗОНЫ СКВАЖИН

Изобретение относится к нефтяной и газовой промышленности и может быть использовано при освоении и эксплуатации месторождений, расположенных в зоне многолетнемерзлых пород. Устройство для термостабилизации приустьевой зоны скважин включает совокупность размещенных вокруг устья скважины термостабилизаторов, соединенных через общий коллектор в верхней их части с конденсатором. При этом нижняя часть термостабилизаторов также объединена общим коллектором, а коэффициент оребрения и площадь поверхности неоребренного конденсатора подбираются такими, чтобы обеспечить выполнение приведенного математического выражения. Техническим результатом является обеспечение возможности беспрепятственной эксплуатации и ремонта скважины при эффективной стабилизации теплового состояния приустьевой зоны скважины в многолетнемерзлых породах. 1 з.п. ф-лы, 1 табл., 2 ил.

Формула изобретения RU 2 534 879 C2

1. Устройство для термостабилизации приустьевой зоны скважин, включающее совокупность размещенных вокруг устья скважины термостабилизаторов, соединенных через общий коллектор в верхней их части с конденсатором, отличающееся тем, что нижняя часть термостабилизаторов также объединена общим коллектором, а коэффициент оребрения и площадь поверхности неоребренного конденсатора подбираются такими, чтобы обеспечить выполнение соотношения:
K·Sn·(tf-t0)≤α·k·S0·(t0-ta),
где K - эффективный коэффициент теплопередачи от добываемого флюида к контуру охлаждения, учитывающий теплопроводность всех конструктивных элементов (слоев) устья скважины; Sn - площадь боковой поверхности направления; t0 - температура оттаивания грунтов; tf - температура добываемого флюида на устье; α - коэффициент теплообмена от наружного воздуха к стенке конденсатора; k - коэффициент оребрения конденсатора; S0 - площадь поверхности неоребренного конденсатора; ta - среднегодовая температура воздуха в районе размещения устройства.

2. Устройство по п.1, отличающееся тем, что для получения прямоточного режима работы общий коллектор нижней части термостабилизаторов соединен с конденсатором.

Документы, цитированные в отчете о поиске Патент 2014 года RU2534879C2

Материалы международной научно-практической конференции
по инженерному мерзлотоведению, посвященной ХХ-летию ООО
НПО "Фундаментстройаркос", Тюмень, 7-10 ноября 2011
Капельная масленка с постоянным уровнем масла 0
  • Каретников В.В.
SU80A1
Устройство для термоизоляции скважин в многолетнемерзлых породах 1990
  • Носков Николай Алексеевич
  • Палесик Владимир Лаврентьевич
  • Корбачков Леонид Алексеевич
  • Александров Юрий Алексеевич
SU1767162A1
Устройство для термоизоляции скважин в многолетнемерзлых породах 1989
  • Носков Николай Алексеевич
  • Палесик Владимир Лаврентьевич
  • Александров Юрий Алексеевич
SU1707188A1
СПОСОБ ТЕПЛОИЗОЛЯЦИИ УСТЬЕВОЙ ЗОНЫ ДОБЫВАЮЩЕЙ СКВАЖИНЫ В МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОДАХ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1998
  • Чугунов Л.С.
  • Ермилов О.М.
  • Попов А.П.
  • Березняков А.И.
  • Тер-Саакян Ю.Г.
  • Решетников Л.Н.
  • Кононов В.И.
  • Фесенко С.С.
RU2127356C1
УСТРОЙСТВО ДЛЯ ОБОГРЕВА УСТЬЯ СКВАЖИНЫ 1994
  • Кадыров Р.Р.
  • Жеребцов Е.П.
  • Салимов М.Х.
  • Латыпов С.С.
RU2076199C1
Способ измерения скорости поступательного движения тела относительно земной поверхности 1953
  • Сивков О.Я.
SU115820A1
Способ непрерывного брикетирования подогретой металлической стружки 1940
  • Дорогов Н.И.
  • Молочников М.Б.
SU62617A1
US 3763931 А, 09.10.1973

RU 2 534 879 C2

Авторы

Мельников Владимир Павлович

Горелик Яков Борисович

Штоль Владимир Филиппович

Горелик Роман Яковлевич

Даты

2014-12-10Публикация

2013-02-21Подача