НЕНАПРАВЛЕННАЯ ШИРОКОПОЛОСНАЯ АНТЕННА Российский патент 2014 года по МПК H01Q9/00 

Описание патента на изобретение RU2535178C1

Изобретение относится к радиотехнике, а именно к антенной технике и, в частности, ненаправленная широкополосная антенна (ШПА) предназначена для использования в качестве приемной и/или передающей ультракоротковолновой (УКВ) антенны совместно с широкодиапазонными УКВ радиостанциями.

Известна УКВ ШПА по патенту РФ №2084993, опубл. 20.07.1997 г. Антенна-аналог состоит из металлического конуса, установленного вертикально над противовесом в виде металлического диска и обращенного к нему вершиной, емкостных выступов, штырей, коаксиального фидера, подключенного центральным проводником к вершине конуса, а экранной оболочкой к противовесу. Кроме того, антенна снабжена шунтирующими штырями.

Недостатком аналога является относительно узкий диапазон рабочих частот и отсутствие излучения вдоль оси антенны.

Известна также ненаправленная ШПА по патенту Франции №2446090, опубл. 25.04.1975 г. Аналог состоит из биконического вибратора. К основанию каждого из конусов подключены логоспиральные проводники. Коаксиальный фидер подключен центральным проводником к вершине одного из конусов, а экранной оболочкой к вершине другого конуса. Недостатком данного аналога является относительно узкий диапазон рабочих частот.

Наиболее близким аналогом (прототипом) по своей технической сущности к заявленной антенне является известная ШПА по патенту РФ №22007673, опубл. 27.06.2003 г. Антенна-прототип состоит из полого металлического конуса (ПМК) и расположенного над его вершиной параллельно плоскости основания проводника в форме однозаходной плоской спирали и коаксиального фидера, подключенного к ПМК.

Недостатком прототипа является относительно узкий диапазон рабочих частот, ограниченный в области низкочастотной части недопустимым ухудшением качества согласования (коэффициента бегущей волны - КБВ).

Целью изобретения является разработка ненаправленной в азимутальной плоскости широкополосной антенны, обеспечивающей расширение ее диапазона рабочих частот в область более низких частот без ухудшения качества согласования.

Поставленная цель достигается тем, что в известной ненаправленной ШПА, содержащей ПМК высотой Hк с углом при вершине α, спиральный проводник и коаксиальный фидер, подключенный к ПМК, ПМК установлен вертикально над проводящей поверхностью и обращен к ней вершиной. Спиральный проводник выполнен в форме конической спирали (КС) высотой Hc и с углом β при вершине. КС установлена в полости ПМК соосно с ним. Вершина КС подключена к внутренней поверхности ПМК у его вершины. Коаксиальный фидер подключен центральным проводником к вершине ПМК, а экранной оболочкой к проводящей поверхности.

Высота Hк ПМК выбрана из условия Hк≥0,16λmax, где λmax - наибольшая длина волны рабочего диапазона волн антенны. Высоты Hк и Hc равны, т.е. Hк=Hc. Углы при вершинах ПМК и КС выбраны в интервалах α=60°-90°; β=30°-40°.

Благодаря новой совокупности существенных признаков в заявленной антенне за счет внутренней поверхности ПМК и провода КС увеличивается путь протекания тока проводимости Inp, что эквивалентно использованию дополнительных проводов емкостной нагрузки, которые не нарушают общего профиля ПМК, и, в то же время обеспечивают его «удлинение», что указывает на возможность расширения диапазона рабочего диапазона антенны в область низких частот.

Заявленная антенна поясняется чертежами, на которых показаны:

на фиг.1 - общий вид антенны;

на фиг.2 - рисунок, поясняющий протекание высокочастотного тока в элементах антенны;

на фиг.3 - результаты измерений качества согласования - КБВ;

на фиг.4 - результаты измерений диаграмм направленности (ДН).

Заявленная ненаправленная ШПА, показанная на фиг.1, состоит из ПМК 1 высотой Hк и с углом при вершине α. ПМК 1 установлен вертикально над проводящей поверхностью 4 и обращен к ней вершиной, проводника в форме КС 2 с углом при вершине β и коаксиального фидера 3, подключенного центральным проводником к вершине ПМК 1 (точка «а»), а экранной оболочкой к проводящей поверхности 4 (точки «б»). Для предотвращения влияния гидрометеоров ШПА может быть помещена в радиопрозрачный обтекатель 5. КС 2 установлена в полость ПМК 1 соосно с ним и подключена вершиной к внутренней поверхности ПМК 1 у его вершины.

Высоту ПМК 1 выбирают с учетом требований по качеству согласования на наибольшей рабочей длине волны - λmax. К данному классу антенн предъявляются требования по коэффициенту бегущей волны (КБВ) не ниже 0,4, т.е. КБВ≥0,4. Диаметр провода КС 2 выбирают из конструктивных соображений в пределах 2-5 мм.

Заявленная ШПА работает следующим образом. При подаче по фидеру 3 возбуждающей ЭДС к точкам «а» и «б» высокочастотный (в.ч.) ток проводимости Inp протекает (см. фиг.2) от точки «а» по внешней поверхности ПМК 1, затем по его внутренней поверхности и далее по проводу КС 2 до его конца (точка «с» на фиг.1), а затем переходит в ток смещения I и далее в ток проводимости Iпр по проводящей поверхности 4, который замыкается на точки «б».

Таким образом, благодаря выбранной конструктивной схеме существенно увеличивается путь тока Inp, что эквивалентно включению в ШПА дополнительной емкостной нагрузки без изменения внешней конфигурации ПМК 1. В свою очередь это указывает на возможность «смещения» частотного диапазона антенны в область низких частот или, при равенстве низкочастотной границы диапазона, к снижению ее физических размеров (высоты) Hк.

Соотношения элементов конструкции ШПА, при которых достигается сформулированный технический результат, были определены экспериментально и составили: Hс=Hк; Hк≥0,16λmax; α=60°-90°; β=20°-40°; соотношение диаметра раскрыва Dк ПМК 1 и диаметра Dc наибольшего витка КС 2 выбрано в интервале Dc=(0,5-0,6)Dк.

Число витков и шаг КС 2 выбирают, исходя из конструктивных соображений и из условия, что общая длина провода КС 2 составляет (1,5-2,0)Hк.

Оптимальными конструктивными параметрами заявленной ШПА являются средние значения указанных выше интервалов этих параметров.

Экспериментальная проверка возможности достижения указанного технического результата была выполнена путем сравнительных измерений качества согласования КБВ и ДН заявленной ШПА при следующих условиях:

Для заявленной ШПА: λmax=1 м, волновое сопротивление фидера ρф=50 Ом; Hc=Hк=160 мм; α=70°; β=25°; диаметр проводника КС 2 выбран равным 2 мм.

Для прототипа:

λmax=1 м; ρф=50 Ом; Hк=160 мм; α=70°.

Результаты измерений, приведенные на фиг.3 (КБВ) и фиг.4 (ДН), дают основание для следующих выводов.

При равных физических высотах заявленной ШПА и прототипа у заявленной антенны уровень КБВ≥0,4 обеспечивается, начиная с электрического размера Hк/λ=0,16, у прототипа с Hк/λ=0,25. Т.е. при равных требованиях по КБВ заявленная антенна обладает на 17% меньшими электрическими размерами, чем у прототипа.

Это указывает на расширение рабочего диапазона в сторону низких частот. Приведенные на фиг.4 результаты измерений ДН ШПА подтверждают возможность неискаженного формирования диаграммы, аналогичной, как и для несимметричного конического вибратора.

Полученные результаты измерений подтверждают возможность достижения указанного технического результата при использовании заявленной антенны.

Похожие патенты RU2535178C1

название год авторы номер документа
ШИРОКОПОЛОСНАЯ АНТЕННА УЛЬТРАКОРОТКОВОЛНОВОГО ДИАПАЗОНА 2017
  • Авдеев Алексей Романович
  • Чернолес Александр Александрович
  • Поздняк Владислав Юрьевич
  • Худайназаров Юрий Кахрамонович
  • Чернолес Владимир Петрович
RU2646534C1
КОНИЧЕСКАЯ УЛЬТРАКОРОТКОВОЛНОВАЯ АНТЕННА 2013
  • Авдеев Алексей Романович
  • Корчемкина Мария Николаевна
  • Лукьянов Николай Олегович
  • Риконен Денис Юрьевич
  • Чернолес Владимир Петрович
RU2535177C1
ДИАПАЗОННЫЙ УЛЬТРАКОРОТКОВОЛНОВЫЙ ВИБРАТОР 2013
  • Авдеев Алексей Романович
  • Мерзлякова Любовь Георгиевна
  • Лукьянов Николай Олегович
  • Риконен Денис Юрьевич
  • Чернолес Владимир Петрович
RU2538909C1
УЛЬТРАКОРОТКОВОЛНОВЫЙ ВИБРАТОР ДЛЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2009
  • Авдеев Алексей Романович
  • Дворников Сергей Викторович
  • Пономарев Александр Анатольевич
  • Чернолес Владимир Петрович
RU2400878C1
КОНИЧЕСКИЙ НЕСИММЕТРИЧНЫЙ ВИБРАТОР 2010
  • Бородулин Роман Юрьевич
  • Львов Андрей Евгеньевич
  • Ульянов Сергей Александрович
RU2448395C1
ШИРОКОПОЛОСНЫЙ УЛЬТРАКОРОТКОВОЛНОВЫЙ ВИБРАТОР 2009
  • Авдеев Алексей Романович
  • Дворников Сергей Викторович
  • Пономарев Александр Анатольевич
  • Чернолес Владимир Петрович
RU2410805C1
Составной конический несимметричный вибратор 2014
  • Бородулин Роман Юрьевич
  • Лукъянов Николай Олегович
  • Ткачев Дмитрий Федорович
  • Ульянов Сергей Александрович
RU2634085C2
ДИАПАЗОННЫЙ СИММЕТРИЧНЫЙ ВИБРАТОР 2009
  • Риконен Денис Юрьевич
  • Самуйлов Игорь Николаевич
  • Хорольский Евгений Михайлович
  • Яшин Вениамин Иванович
RU2407117C1
КОМПАКТНЫЙ ШИРОКОДИАПАЗОННЫЙ КОНИЧЕСКИЙ НЕСИММЕТРИЧНЫЙ ВИБРАТОР 2013
  • Белостоцкая Кира Константиновна
  • Дупленкова Мария Дмитриевна
  • Никифоров Евгений Алексеевич
  • Чеботарев Александр Семенович
RU2533867C1
АЭРОСТАТНАЯ УЛЬТРАКОРОТКОВОЛНОВАЯ АНТЕННА 2006
  • Курносов Валерий Игоревич
  • Лычагин Николай Иванович
  • Попов Виктор Александрович
  • Чернолес Владимир Петрович
RU2321110C1

Иллюстрации к изобретению RU 2 535 178 C1

Реферат патента 2014 года НЕНАПРАВЛЕННАЯ ШИРОКОПОЛОСНАЯ АНТЕННА

Изобретение относится к радиотехнике и предназначено для использования в качестве приемной и/или передающей антенны совместно с широкополосными радиостанциями. Технический результат - расширение рабочего диапазона путем обеспечения функционирования антенны в диапазоне низких частот. Ненаправленная широкополосная антенна (ШПА) состоит из полого металлического конуса (ПМК) 1 высотой Hк и с углом α при вершине, конической спирали (КС) 2 с углом при вершине β и высотой Hc=Hк. ПМК 1 установлен вертикально над проводящей поверхностью 4 и обращен к ней вершиной. КС 2 установлена в полости ПМК 1 соосно с ним и подключена вершиной к внутренней полости ПМК 1 у его вершины. Коаксиальный фидер 3 подключен центральным проводником к вершине ПМК 1, а экранной оболочкой к проводящей поверхности 4. 2 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 535 178 C1

1. Ненаправленная широкополосная антенна, содержащая полый металлический конус (ПМК) высотой Hк и с углом при вершине α, спиральный проводник и коаксиальный фидер, подключенный к ПМК, отличающаяся тем, что ПМК установлен вертикально над проводящей поверхностью и обращен к ней вершиной, спиральный проводник выполнен в форме конической спирали высотой Hc с углом β при вершине и установлен в полости ПМК соосно с ним, вершина конической спирали подключена к внутренней поверхности ПМК у его вершины, а коаксиальный фидер подключен центральным проводником к вершине ПМК, а экранной оболочкой к проводящей поверхности.

2. Ненаправленная широкополосная антенна по п.1, отличающаяся тем, что высота Hк ПМК выбрана из условия Hк≥0,6λmax, где λmax - максимальная длина волны рабочего диапазона волн антенны.

3. Ненаправленная широкополосная антенна по п.1, отличающаяся тем, что углы α и β выбраны в интервалах α=60°-90°; β=30°-40°.

Документы, цитированные в отчете о поиске Патент 2014 года RU2535178C1

СЛАБОНАПРАВЛЕННАЯ ШИРОКОПОЛОСНАЯ АНТЕННА 2001
  • Винницкий З.Л.
  • Двуреченский В.Д.
  • Федотов А.Ю.
RU2207673C2
Способ получения низкокислотной или нейтральной лигнинной муки 1949
  • Богомолов Б.Д.
SU93182A1
ШИРОКОПОЛОСНАЯ АНТЕННА 1993
  • Катанович Андрей Андреевич
RU2084993C1
ШИРОКОПОЛОСНАЯ АНТЕННА ДЛЯ СТАЦИОНАРНЫХ И ПОДВИЖНЫХ СРЕДСТВ СВЯЗИ 2007
  • Мещеряков Евгений Яковлевич
  • Плишкин Анатолий Владимирович
  • Чалых Владимир Степанович
  • Чаплыгин Александр Александрович
  • Шебашов Сергей Вячеславович
  • Шульженко Сергей Николаевич
RU2356138C2
КОНИЧЕСКИЙ НЕСИММЕТРИЧНЫЙ ВИБРАТОР 2010
  • Бородулин Роман Юрьевич
  • Львов Андрей Евгеньевич
  • Ульянов Сергей Александрович
RU2448395C1
US 4907011 A1, 06.03.1990
Перекатываемый затвор для водоемов 1922
  • Гебель В.Г.
SU2001A1

RU 2 535 178 C1

Авторы

Авдеев Алексей Романович

Петухова Надежда Сергеевна

Лукьянов Николай Олегович

Риконен Денис Юрьевич

Чернолес Владимир Петрович

Даты

2014-12-10Публикация

2013-07-05Подача