Изобретение относится к промышленной акустике.
Наиболее близким техническим решением по технической сущности и достигаемому результату является малошумное здание по патенту РФ №129125, опубл. 20.06.13, [прототип], содержащая каркас на перекрытии здания и стены со звукопоглощающей облицовкой.
Недостатком технического решения, принятого в качестве прототипа, является сравнительно невысокая эффективность шумоглушения за счет сравнительно невысокого коэффициента вибродемпфирования межэтажного перекрытия, а также низкая сейсмостойкость здания.
Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания при тех же габаритах элементов, повышающих эффективность снижения шума и вибрации.
Это достигается тем, что в малошумном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером.
На фиг.1 изображен общий вид малошумного здания, на фиг.2 - разрез междуэтажного перекрытия здания, на фиг.3 - конструкция подвесного потолка, на фиг.4 - схема виброизоляции железобетонной плиты в основании здания, фиг.5 - общий вид виброизолятора, фиг.6 - разрез А-А виброизолятора, на фиг.7 изображен общий вид штучного звукопоглотителя, на фиг.8 - разрез звукопоглощающего винтового элемента штучного поглотителя, на фиг.9 - вариант выполнения конструкции пола на упругом основании, на фиг.10 представлен фронтальный разрез варианта штучного звукопоглотителя, на фиг.11 - его профильная проекция, на фиг.12 - вариант выполнения каркаса.
Малошумное здание (фиг.1) содержит каркас здания с основанием (фиг.4), оконные 9 и дверные 10 проемы и несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол и потолок), которые облицованы звукопоглощающими конструкциями, а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал и установленные над шумным оборудованием 11.
Конструкция пола на упругом основании (фиг.2) содержит установочную плиту 12, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите 15 межэтажного перекрытия с полостями 16 через слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 с зазором 17 относительно несущих стен 1, 2, 3, 4 производственного здания. Чтобы обеспечить эффективную виброизоляцию установочной плиты 12 по всем направлениям, слои вибродемпфирующего материала 14 и гидроизоляционного материала 13 выполнены с отбортовкой, плотно прилегающей к несущим конструкциям стен 1, 2, 3, 4 и базовой несущей плите 15 перекрытия.
Для повышения эффективности виброизоляции и сейсмостойкости здания базовые несущие плиты 15 перекрытия (на фиг.2 показана плита 15 перекрытия только для одного этажа здания и с одной стороны несущих стен 1, 2, 3, 4) снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов 26 и 28, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов 27, воспринимающих горизонтальные статические и динамические нагрузки. Схема виброизоляторов, выполненных из эластомера, представлена на фиг.5-6. Каждый из виброизоляторов 26, 27, 28 состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39 (фиг.5 и 6), в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора.
Для повышения эффективности звукоизоляции и звукопоглощения в цехах, находящихся под межэтажным перекрытием, полости 16 заполнены вибродемпфирующим материалом, например вспененным полимером, например полиэтиленом или полипропиленом, а стены 1, 2, 3, 4 облицованы звукопоглощающими конструкциями. В качестве звукопоглощающего материала звукопоглощающих конструкций используются плиты из минеральной ваты на базальтовой основе типа «Rockwool», или минеральной ваты типа «URSA», или базальтовой ваты типа П-75, или стекловаты с облицовкой стекловойлоком, причем звукопоглощающий элемент по всей своей поверхности облицован акустически прозрачным материалом (на чертеже не показано), например стеклотканью типа ЭЗ-100 или полимером типа «Повиден».
В качестве звукопоглощающего материала может быть использован также жесткий пористый материал, например пеноалюминий, или металлокерамика, или камень-ракушечник, со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%. В качестве звукопоглощающего материала может быть использован материал в виде крошки из твердых вибродемпфирующих материалов, например эластомера, или полиуретана, или пластиката, причем размер фракций крошки лежит в оптимальном интервале величин: 0,3÷2,5 мм (на чертеже не показано).
Подвесной акустический потолок (фиг.3) состоит из жесткого каркаса 19, выполненного по форме в виде прямоугольного параллелепипеда с размерами сторон в плане В×С, отношение которых лежит в оптимальном интервале величин В:С=1:1…2:1, подвешиваемого к потолку производственного здания с помощью подвесок 21, имеющих скобы 22 для прокладки проводов электропитания к светильникам 24, установленным в каркасе 19. Крепление каркаса к потолку осуществляется с помощью дюбель-винтов 23. К каркасу прикреплен перфорированный лист 20, на котором через слой акустического прозрачного материала 25 расположен слой звукопоглощающего материала 18. При монтаже акустического потолка должны соблюдаться оптимальные соотношения размеров: D - от точки подвеса каркаса до любой из его сторон и Е - толщины слоя звукопоглощающего материала, причем отношение этих размеров должно находиться в оптимальном интервале величин: E:D=0,1…0,5. Перфорированный лист 20 имеет следующие параметры перфорации: диаметр перфорации - 3…7 мм, процент перфорации 10%…15%, причем по форме перфорация может быть выполнена в виде отверстий круглого, треугольного, квадратного, прямоугольного или ромбовидного сечения (на чертеже показаны квадратные отверстия). В случае некруглых отверстий в качестве условного диаметра следует считать максимальный диаметр вписываемой в многоугольник окружности.
На фиг.4 представлена схема виброизоляции железобетонной плиты, состоящей из связанных между собой железобетонных балок 29 в основании здания, которая является вариантом виброзащиты без домкратов и включает в себя, по крайней мере, четыре резиновых виброизолятора 33 (фиг.5 и 6), устанавливаемых между металлической плитой 34 и железобетонной балкой 29, расположенной в основании 30 здания, выполненного за одно целое с, по крайней мере, восемью ленточными фундаментными блоками 31 и 32, являющимися своеобразными "ловушками", а каждая из металлических плит 34 установлена на, по крайней мере, трех железобетонных столбах-упорах 35. Между каждыми ленточными фундаментными блоками 31 и 32 и каждой из железобетонных балок 29 устанавливаются песчаные подушки 37, а под резиновыми виброизоляторами 33 закреплены тензорезисторные датчики 36, контролирующие осадку виброизоляторов 33. Песчаные подушки 37 установлены в металлических разъемных обоймах.
В процессе возведения сейсмостойкого здания опалубка железобетонной монолитной стены опирается на песчаные подушки 37, заключенные в разборную металлическую обойму. После отвердения бетона и снятия опалубки между выступами "ловушками" 31 и 32 устанавливается виброизолятор 33 в сборе. После того как бетон в балке 29 наберет достаточную прочность, металлическая обойма размыкается и песок из "подушки" извлекается, а балка 29 опирается на виброизолятор 33. В дальнейшем, по мере воздвижения здания, виброизолятор 33 сжимается. Демонтаж и замена виброизолятора 33 производятся с помощью домкратов (на чертеже не показано).
При монтаже системы виброзащиты здания указанным способом необходимо соблюдать следующие положения:
- виброизоляторы 33 должны быть смонтированы уже в начальной стадии строительства, в связи с чем они должны быть заранее изготовлены и испытаны;
- должна быть обеспечена сохранность виброизоляторов 33 и тензорезисторных датчиков 36 от воздействия неблагоприятных природных факторов в период строительства;
- высота песчаной подушки 37 назначается по расчету, исходя из осадки виброизоляторов 33 под нагрузкой и с течением времени;
- для регулировки зазора между железобетонной балкой 29 и "ловушкой" на последней устанавливаются, по крайней мере, две съемные металлические плиты толщиной по 1 см.
Каждый из виброизоляторов 33 (фиг.5 и 6) состоит из жестко связанных между собой резиновых плит: верхней 38 и нижней 39, в которых выполнены сквозные отверстия 40, расположенные по поверхности виброизолятора в шахматном порядке. По форме виброизоляторы 33 выполнены квадратными или прямоугольными, а также их боковые грани могут быть выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом. Отверстия 40 имеют в сечении форму, обеспечивающую равночастотность виброизолятора 33.
Штучный звукопоглотитель состоит из жесткого перфорированного каркаса (фиг.7 и 8), состоящего из нижней части 41 конической формы с крышкой 42, и верхней части 44 цилиндрической формы с верхним основанием 46 и нижним основанием 45, которое крепится к крышке 42 нижней части перфорированного каркаса посредством вибродемпфирующей прокладки 48, позволяющей демпфировать высокочастотные колебания, передающиеся от объекта (на чертеже не показано). Прокладка 48 может быть выполнена из вибродемпфирующего материала, например пластиката типа «Агат» или мастики ВД-17.
К верхнему основанию 46 верхней части цилиндрического перфорированного каркаса шарнирно закреплен элемент 50, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения, переборке судовой каюты, несущей конструкции производственного оборудования, причем полости нижней части 41 и верхней части 44 перфорированного каркаса заполнены соответственно звукопоглощающими материалами 43 и 47 различной плотности, подавляющих шумы соответственно в различных полосах частот, например на низких и средних частотах соответственно.
Вокруг верхней части 44 цилиндрической формы перфорированного каркаса расположен, по крайней мере один, винтовой звукопоглощающий элемент 49 штучного поглотителя, выполненный в виде цилиндрической винтовой пружины из плотного негорючего звукопоглощающего материала, например винипора, или тонкого стекловолокна, обернутого акустически прозрачным материалом, например стеклотканью.
Винтовой звукопоглощающий элемент 49 штучного поглотителя (фиг.8) может быть выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней 51 и внутренней 52 винтовыми поверхностями, образующими полость 54, при этом пространство, образованное внешней 51 и внутренней 52 винтовыми поверхностями, например круглого сечения, заполнено звукопоглощающим материалом 53.
Конструкция пола на упругом основании (фиг.9) относительно несущих стен 1, 2, 3, 4 производственного здания может быть выполнена в виде плавающего пола, которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий. Эта конструкция представляет собой слой 56 звукоизоляционного прокладочного материала «пенотерм НПП ЛЭ», расположенного на плите перекрытия 55, поверх которого выполняется цементно-песчаная стяжка 58 через металлическую сетку 57. На стяжку 58 укладывается подложка 59 типа «Порилекс», затем ламинат 60 с плинтусом 61.
ЗАО «Уралпластик», являясь крупнейшим производителем вспененных полимеров в России, специально разработало вибродемпфирующий материал ПЕНОТЕРМ НПП ЛЭ для шумоизоляции междуэтажных перекрытий. Пенотерм НПП ЛЭ - рулонный вибродемпфирующий материал с закрытопористой ячеистой структурой, изготовленный экструзионным методом из полипропилена, с введением вспенивателя, антипиренов, стабилизирующих, пластифицирующих и других технологических добавок, обеспечивающих оптимальный показатель динамического модуля упругости ЕД=0,66 МПа и сохранение всех заложенных характеристик в течение всего срока службы объекта. Упругие свойства скелета материала пенотерм НПП ЛЭ, химическая стойкость и наличие воздуха, заключенного в его порах, обуславливают гашение энергии удара и вибрации, что способствует снижению ударного и воздушного шума. Структура пенополипропилена способна препятствовать воздействию агрессивных сред, механическим нагрузкам и процессу старения.
Основные физико-механические свойства материала пенотерм НПП ЛЭ:
Динамический модуль упругости при нагрузке 2000 Н/кв.м - 0,66 МПа.
Относительное сжатие при нагрузке 2000 Н/кв.м - 11%.
Индекс снижения ударного шума в конструкциях "плавающих полов" - 20÷22 дБ.
Плотность - 40 кг/куб.м.
Толщина поставляемого ЗАО «Уралпластик» материала - 6, 8 и 10 мм.
Штучный звукопоглотитель (фиг.10, 11, 12) состоит из жесткого каркаса 62, подвешиваемого за крючья 65 на тросах (см. фиг.10) либо непосредственно крепящегося к потолку производственного здания. Внутри каркаса расположен звукопоглощающий материал 63, обернутый сетчатой капроновой тканью 64 или стеклотканью. В некоторых случаях поверх стеклоткани 64 к каркасу 62 может быть прикреплен просечно-вытяжной стальной лист (на чертеже не показан). Каркас может быть выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5 или куба с размером ребра k×L, где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2.
Внутри каркаса 62 могут быть полости 66, не заполненные звукопоглощающим материалом, причем их расположение может быть выполнено послойно рядами (на чертеже не показано) или в шахматном порядке, как показано на фиг.10. Каркас 62 подвешивается за крючья 65, как показано на фиг.10, или крючья могут быть расположены с вершинах куба (на чертеже не показано). При этих схемах подвеса должны соблюдаться оптимальные соотношения размеров: D - от центра каркаса до точки подвеса к потолку и С - расстояние между осями соседних каркасов (фиг.10), причем отношение этих размеров должно находиться в оптимальном интервале величин: C:D=1:1…4:1.
Заполнение осуществляют звукопоглощающим негорючим материалом (например, винипором, стекловолокном) с защитным слоем 64 из стеклоткани, предотвращающим выпадение звукопоглотителя.
В качестве звукопоглощающего материала может быть применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия.
В качестве звукопоглощающего материала может быть применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен.
Просечно-вытяжной стальной лист может быть выполнен с коэффициентом перфорации перфорированной поверхности, принимаемым равным или более 0,25.
Малошумное здание работает следующим образом.
Звуковая энергия от оборудования 11, находящегося в помещении, попадает на слои звукопоглощающего материала звукопоглощающих конструкций, которыми облицованы несущие стены 1, 2, 3, 4 с ограждениями 5, 6 (пол 6 и потолок 5), а также штучные звукопоглотители 7 и 8, содержащие каркас, в котором расположен звукопоглощающий материал, и которые установлены над шумным оборудованием 11. Переход звуковой энергии в тепловую (диссипация, рассеивание энергии) происходит в порах звукопоглотителя, представляющих собою модель резонаторов "Гельмгольца", где потери энергии происходят за счет трения колеблющейся с частотой возбуждения массы воздуха, находящегося в горловине резонатора о стенки самой горловины, имеющей вид разветвленной сети пор звукопоглотителя. Коэффициент перфорации перфорированной стенки принимается равным или более 0,25. Для предотвращения высыпания мягкого звукопоглотителя предусмотрена стеклоткань, например типа ЭЗ-100, расположенная между звукопоглотителем и перфорированной стенкой.
Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.
При установке виброактивного оборудования на плиту 12 происходит двухкаскадная виброзащита за счет вибродемпфирующих вкраплений в саму массу плиты 12, а также за счет слоя вибродемпфирующего материала 14, в качестве которого могут быть использованы: иглопробивные маты типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, материал из твердых вибродемпфирующих материалов, например, пластиката, из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.
Подвесной акустический потолок работает следующим образом.
Подвешивание подвесного акустического потолка осуществляют на подвесках 21, которые крепятся к потолку с помощью дюбель-винтов 23, а другим концом закреплены на каркасе 19. Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем полостями.
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.
Штучный звукопоглотитель работает следующим образом.
Звуковые волны, распространяясь на промышленном или транспортном объектах, взаимодействуют со звукопоглощающим материалом 43 и 47 различной плотности, подавляющих шумы соответственно в различных полосах частот, например на низких и средних частотах соответственно.
Звукопоглощение на средних и высоких частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных воздушными полостями перфорированного каркаса. Различные объемы резонансных полостей: нижней части 41 конической формы и верхней части 44 цилиндрической формы, служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот. Взаимодействие звуковых волн с винтовым звукопоглощающим элементом 49 приводит к шумоглушению в высокочастотном диапазоне, а выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.
Штучный звукопоглотитель (фиг.10, 11, 12) работает следующим образом.
Звуковые волны, распространяясь в производственном помещении, взаимодействуют с заполненными звукопоглотителем 63 полостями. Звукопоглощение на низких и средних частотах происходит за счет акустического эффекта, построенного по принципу резонаторов Гельмгольца, образованных полостями 66. Различные объемы резонансных полостей служат для подавления звуковых колебаний в требуемом звуковом диапазоне частот, как правило большие объемы для подавления шума в низкочастотном диапазоне, а малые - в области средних и высоких частот.
Взаимодействие звуковых волн с активными полостями, заполненными негорючим звукопоглотителем 63, приводит к шумоглушению в высокочастотном диапазоне, причем за счет наличия полостей 66 увеличивается поверхность звукопоглощения и, как следствие, повышается коэффициент звукопоглощения.
Преимуществом предлагаемого изобретения является его универсальность применения для различных производственных помещений, имеющих самые разнообразные шумовые характеристики. При этом следует отметить относительную легкость настройки штучного звукопоглотителя на требуемый частотный диапазон шумоподавления и его экономически обоснованную эффективность (имеется в виду снижение шума до санитарно-гигиенических норм). Кроме того, выполнение звукопоглотителя из негорючих материалов делает конструкцию пожаробезопасной.
название | год | авторы | номер документа |
---|---|---|---|
МАЛОШУМНОЕ СЕЙСМОСТОЙКОЕ ПРОИЗВОДСТВЕННОЕ ЗДАНИЕ | 2014 |
|
RU2572861C1 |
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ЦЕХА | 2013 |
|
RU2543827C2 |
АКУСТИЧЕСКАЯ ОТДЕЛКА ЦЕХА | 2013 |
|
RU2543826C2 |
МАЛОШУМНОЕ ПРОИЗВОДСТВЕННОЕ ПОМЕЩЕНИЕ | 2010 |
|
RU2425196C1 |
МАЛОШУМНОЕ ЗДАНИЕ КОЧЕТОВА | 2014 |
|
RU2582686C1 |
МАЛОШУМНОЕ СЕЙСМОСТОЙКОЕ ЗДАНИЕ | 2014 |
|
RU2576258C1 |
МАЛОШУМНОЕ СЕЙСМОСТОЙКОЕ ПРОИЗВОДСТВЕННОЕ ЗДАНИЕ КОЧЕТОВА | 2014 |
|
RU2573882C1 |
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ЦЕХА | 2013 |
|
RU2529352C1 |
АКУСТИЧЕСКАЯ КОНСТРУКЦИЯ ЦЕХА КОЧЕТОВА | 2013 |
|
RU2530437C1 |
ПРОИЗВОДСТВЕННОЕ ПОМЕЩЕНИЕ С НИЗКИМ УРОВНЕМ ШУМА | 2012 |
|
RU2490401C1 |
Изобретение относится к промышленной акустике. Технический результат - повышение эффективности шумоглушения и сейсмостойкости здания. Это достигается тем, что в малошумном здании, содержащем каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером. 3 з.п. ф-лы, 12 ил.
1. Малошумное здание, содержащее каркас здания с основанием, несущие стены с ограждениями в виде пола и потолка, которые облицованы звукопоглощающими конструкциями, оконные и дверные проемы, а также штучные звукопоглотители, содержащие каркас, в котором расположен звукопоглощающий материал, и установленные над шумным оборудованием, базовые несущие плиты перекрытия снабжены в местах их крепления к несущим стенам здания системой пространственной виброизоляции, состоящей из горизонтально расположенных виброизоляторов, воспринимающих вертикальные статические и динамические нагрузки, а также вертикально расположенных виброизоляторов, воспринимающих горизонтальные статические и динамические нагрузки, при этом пол в помещениях выполнен на упругом основании и содержит установочную плиту, выполненную из армированного вибродемпфирующим материалом бетона, которая устанавливается на базовой плите межэтажного перекрытия с полостями через слои вибродемпфирующего материала и гидроизоляционного материала с зазором относительно несущих стен производственного помещения, причем полости базовой плиты заполнены вибродемпфирующим материалом, например вспененным полимером, основание каркаса здания выполнено с виброизоляцией железобетонной плиты, состоящей из связанных между собой железобетонных балок в основании здания, которая включает в себя, по крайней мере, четыре виброизолятора, устанавливаемых между металлической плитой и железобетонной балкой, расположенной в основании здания, выполненного за одно целое с, по крайней мере, восемью ленточными фундаментными блоками, являющимися своеобразными "ловушками", а каждая из металлических плит установлена на, по крайней мере, трех железобетонных столбах-упорах, а между каждыми ленточными фундаментными блоками и каждой из железобетонных балок устанавливаются песчаные подушки, а под виброизоляторами закреплены тензорезисторные датчики, контролирующие осадку виброизоляторов, при этом песчаные подушки установлены в металлических разъемных обоймах, а каждый из виброизоляторов состоит из жестко связанных между собой резиновых плит: верхней и нижней, в которых выполнены сквозные отверстия, расположенные по поверхности виброизолятора в шахматном порядке, а по форме виброизоляторы выполнены квадратными или прямоугольными, а их боковые грани выполнены в виде криволинейных поверхностей n-ого порядка, обеспечивающие равночастотность системы виброизоляции в целом, при этом отверстия имеют в сечении форму, обеспечивающую равночастотность виброизолятора, отличающееся тем, что конструкция пола помещения выполнена в виде плавающего пола, которая предусматривает дополнительную шумоизоляцию междуэтажных перекрытий, и представляет собой слой звукоизоляционного прокладочного материала «пенотерм НПП ЛЭ», расположенного на плите перекрытия, поверх которого выполнена цементно-песчаная стяжка через металлическую сетку, а на стяжку уложена подложка из материала типа «порилекс», затем ламинат с плинтусом, а упругое основание пола выполнено из жесткого пористого вибропоглощающего материала, например эластомера, или полиуретана со степенью пористости, находящейся в диапазоне оптимальных величин: 30÷45%, или упругое основание пола выполнено из иглопробивных матов типа «Вибросил» на базе кремнеземного или алюмоборосиликатного волокна, или упругое основание пола выполнено из твердых вибродемпфирующих материалов, например пластиката, или упругое основание пола выполнено из звукоизоляционных плит на базе стеклянного штапельного волокна типа «Шумостоп» с плотностью материала, равной 60÷80 кг/м3.
2. Малошумное здание по п.1, отличающееся тем, что штучный звукопоглотитель содержит жесткий перфорированный каркас, внутри которого размещен звукопоглощающий материал, а каркас выполнен из нижней части конической формы с крышкой и верхней части цилиндрической формы, которая крепится к крышке нижней части перфорированного каркаса посредством вибродемпфирующей прокладки, позволяющей демпфировать высокочастотные колебания, при этом к верхней части цилиндрического перфорированного каркаса шарнирно закреплен элемент, при помощи которого каркас крепится к требуемому объекту, например потолку производственного помещения, а полости нижней и верхней частей перфорированного каркаса заполнены звукопоглощающими материалами различной плотности, причем вокруг верхней части цилиндрической формы перфорированного каркаса расположен, по крайней мере один, винтовой звукопоглощающий элемент штучного поглотителя, выполненный в виде цилиндрической винтовой пружины из плотного негорючего звукопоглощающего материала.
3. Малошумное здание по п.1, отличающееся тем, что винтовой звукопоглощающий элемент штучного поглотителя выполнен в виде полого винтового звукопоглощающего элемента, образованного внешней и внутренней винтовыми поверхностями, образующими полость, при этом пространство, образованное внешней и внутренней винтовыми поверхностями, заполнено звукопоглощающим материалом.
4. Малошумное здание по п.1, отличающееся тем, что штучный звукопоглотитель состоит из жесткого каркаса, подвешиваемого за крючья на тросах к потолку производственного здания с расположенным внутри каркаса звукопоглощающим материалом, обернутым сетчатой капроновой тканью, к каркасу прикреплен просечно-вытяжной стальной лист, а каркас может быть выполнен по форме в виде прямоугольного параллелепипеда с размерами ребер L×H×B, отношение которых лежит в оптимальном интервале величин L:H:B=2:1:0,5 или куба с размером ребра k×L,
где min L=100 мм; k - коэффициент пропорциональности, лежащий в пределах от 1 до 10 с шагом 2, причем при подвесе каркаса выполняются оптимальные соотношения размеров: D - от центра каркаса до точки подвеса к потолку и С - расстояние между осями соседних каркасов, причем отношение этих размеров должно находиться в оптимальном интервале величин: C:D=1:1…4:1, внутри каркаса выполнены полости, построенные по принципу резонаторов Гельмгольца и не заполненные звукопоглощающим материалом, причем их расположение может быть выполнено послойно рядами или в шахматном порядке, в качестве звукопоглощающего материала применен материал на основе алюминесодержащих сплавов с последующим наполнением их гидридом титана или воздухом с плотностью в пределах 0,5…0,9 кг/м3 со следующими прочностными свойствами: прочность на сжатие в пределах 5…10 МПа, прочность на изгиб в пределах 10…20 МПа, например пеноалюминия, или в качестве звукопоглощающего материала применена минеральная вата на базальтовой основе типа «Rockwool», или минеральная вата типа «URSA», или базальтовая вата типа П-75, или стекловата с облицовкой стекловойлоком, или вспененный полимер, например полиэтилен или полипропилен.
Автомат для изготовления гофренных коробок и упаковки в них штучных изделий | 1959 |
|
SU129125A1 |
JP 2002364111 A, 18.12.2002 | |||
Многошпиндельный станок для очистки отверстий распылителей | 1980 |
|
SU880515A1 |
US 20070267247 A1, 22.11.2007 | |||
ПРОТИВОШУМНЫЙ НАУШНИК (ВАРИАНТЫ) | 2005 |
|
RU2302225C1 |
Авторы
Даты
2014-12-27—Публикация
2013-10-09—Подача