ИНДУКТОРНАЯ МАШИНА С АКСИАЛЬНЫМ МАГНИТНЫМ ПОТОКОМ ДЛЯ ЖЕСТКИХ УСЛОВИЙ ЭКСПЛУАТАЦИИ Российский патент 2015 года по МПК H02K19/00 

Описание патента на изобретение RU2539572C2

Изобретение относится к области электротехники, а именно к индукторным машинам с бесконтактной коммутацией, осуществляемой с помощью полупроводниковых приборов, и может быть использовано для электроприводов различного назначения, а также в системах генерации электроэнергии при повышенных требованиях к надежности. Преимущественная область применения - системы электродвижения подводных, глубоководных обитаемых и необитаемых аппаратов, судов морского и речного флота, а также электронасосы, компрессоры, работающие в жестких условиях эксплуатации.

Известны торцевые электрические машины (Патент РФ №2448404 на изобретение ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА от 24.02.2011, МПК H02K 16/02 (2006.01), H02K 1/06 (2006.01), Патентообладатель: Пучкин Евгений Константинович (RU)) и (Патент РФ №2313888 на изобретение ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА от 15.06.2006, МПК H02K 21/24 (2006.01), H02K 21/12 (2006.01), H02K 16/02 (2006.01), Патентообладатель: Государственное образовательное учреждение высшего профессионального образования Красноярский государственный технический университет (КГТУ) (RU)).

Основным общим недостатком данных машин является - в связи с использованием в конструкции роторов ферритовых сердечников с короткозамкнутыми обмотками - определенное ограничение по нагрузочной способности из-за отсутствия возможности эффективного охлаждения как ротора, так и двигателя в целом.

Также известен электродвигатель (Международная патентная заявка № WO/2010/084530, ELECTRIC MOTOR, 07.05.2009, IPC H02K 16/02 (2006.01), H02K 21/24 (2006.01), Заявители: KASAI, Toshiyuki [JP/JP], OKAMOTO, Tetsuo [JP/JP]), содержащий корпус со статором в средней части двигателя, который скомпонован из двух обмоток с расположенным между ними плоским кольцом с 4-мя парами постоянных магнитов; вала двигателя на двух подшипниках, с закрепленными на нем (с левой и правой наружной торцевой стороны статора двигателя) двумя плоскими дисковыми роторами, на поверхности которых расположены по 2-е пары постоянных магнитов, имеющих форму сектора кольца (1/4 кольца), ограниченного радиусами, а также наружной и внутренней (со стороны вала двигателя) окружностью диска ротора, а также двумя электроконтактными коммутаторами кулачкового типа, закрепленными на одном из выходов вала двигателя.

Недостатками данного электродвигателя являются:

- относительно сложная конструкция статора, занимающая значительную часть объема двигателя;

- использование при переключении обмоток статора (для создания вращающего магнитного поля) электроконтактного коммутатора (относительно ненадежного узла электродвигателя), требующего проведения регулярного технического обслуживания.

Известен электропривод (Патент РФ №2219642 на изобретение ЭЛЕКТРОПРИВОД (ВАРИАНТЫ) от 09.12.1999, МПК7 Н02К 21/12, Патентообладатель: ЭДВЕНСЕД РОТАРИ СИСТЕМС, ЛЛС. (US)), содержащий ротор и статор, при этом ротор выполнен в виде двух шайб с распределенными по окружности полюсами и размещенного между шайбами цилиндрического магнита, намагниченного в аксиальном направлении таким образом, что полюсы каждой из шайб являются одноименными, а по отношению к полюсам другой шайбы - разноименными, а статор выполнен в виде распределенных по окружности катушек, отличающийся тем, что полюсы ротора образованы зубьями, выполненными по внутренней окружности обеих шайб, обращенными к оси устройства и расположенными в плоскостях, перпендикулярных оси устройства, а полюсы катушек статора размещены с возможностью торцевого взаимодействия с полюсами ротора.

Также известен синхронный реактивный электродвигатель (Патент РФ №2057389 на изобретение СИНХРОННЫЙ РЕАКТИВНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ от 16.02.1994, МПК6 Н02К 19/06, Патентообладатель: Новосибирский государственный технический университет (RU)), содержащий статор с m-фазной обмоткой и явнополюсный ротор, магнитопровод которого выполнен из расположенных вдоль активной поверхности двигателя ферромагнитных пакетов, состоящих из отдельных элементов, отличающийся тем, что ферромагнитные пакеты выполнены П-образными из элементов, боковые поверхности которых параллельны оси вращения ротора, радиально ориентированные участки пакетов расположены в пределах активного объема ротора и имеют переменную высоту, изменяющуюся по линейному закону от нуля на внешнем радиусе до максимального значения на внутреннем радиусе активной зоны машины, тангенциально ориентированные участки пакетов имеют постоянную высоту и размещены в области, ограниченной внутренним радиусом активного объема двигателя.

При использовании данных технических решений (Патенты РФ №2219642 и 2057389) в жестких условиях эксплуатации, например, при работе в составе электронасоса для перекачки агрессивной жидкости или в качестве привода гребного винта системы электродвижения подводного обитаемого и необитаемого аппарата необходимо обеспечить надежную герметизацию внутреннего объема электродвигателя от внешней среды, что является достаточно сложной технической проблемой, в том числе требующей проведения регулярного технического обслуживания узла уплотнения выходного вала в процессе эксплуатации.

Кроме этого, так как существующие конструкции уплотнения выходного вала электродвигателя зачастую (при большом значении давления) не способны обеспечить необходимую герметизацию, разработчики систем электродвижения глубоководных аппаратов вынуждены для передачи крутящего момента создавать специальные маслозаполненные электрические двигатели с приспособлениями выравнивания давления или основной двигатель дополнять электромагнитной муфтой специального исполнения (см., например, Свидетельство на полезную модель РФ №36923 «Герметизированная магнитная муфта») и т.д.

Наиболее близким по технической сущности к заявляемому решению является вентильный двигатель-генератор (Патент РФ №117167 на полезную модель ВЕНТИЛЬНЫЙ ДВИГАТЕЛЬ-ГЕНЕРАТОР С ИЗМЕНЯЕМОЙ ГЕОМЕТРИЕЙ МАГНИТНОЙ СИСТЕМЫ от 13.09.2011, МПК F02N 11/04 (2006.01), H02K 29/00 (2006.01), H02K 1/06 (2006.01), Патентообладатели: Милов Владимир Николаевич (RU), Милов Евгений Владимирович (RU), Сипин Иван Александрович (RU), Карпинский Александр Иванович (RU), Андреенко Александр Степанович (RU), содержащий корпус двигателя, статор с находящейся на нем якорной обмоткой и ротор с внешним валом.

Основным недостатком по прототипу является то, что конструкцией данного вентильного двигателя-генератора с изменяемой геометрией магнитной системы не обеспечивается его работа в жестких условиях эксплуатации.

В соответствии с классификацией условий эксплуатации электродвигателей, разработанной Всесоюзным научно-исследовательским, проектно-конструкторским и технологическим институтом электромашиностроения (ВНИПТИЭМ), г. Владимир (см. Web-страницу: http://leg.co.ua/info/elektricheskie-mashiny/ekspluataciya-elektrodvigateley-v-selskom-hozyaystve-4.html), условия эксплуатации разделены на легкие, нормальные, жесткие и особо жесткие. Легкие условия эксплуатации означают, что один или несколько факторов, влияющих на надежность электродвигателя, отклоняются от номинальных режимов в сторону их облегчения. Жесткие условия характеризуются наличием одного из факторов (например, таких как: влажность, сырость, особая сырость, химически активная среда), значение которого выше номинального уровня. Особо жесткие условия характеризуются наличием двух и более факторов, превышающих номинальные значения, либо одним из факторов, из-за чрезвычайно высокого отклонения которого от номинального уровня значительно снижается надежность электродвигателя.

Целью изобретения является создание индукторной машины с аксиальным магнитным потоком, обеспечивающей повышенные требования к надежности в условиях жестких условий эксплуатации.

Поставленная цель достигается тем, что в индукторной машине с аксиальным магнитным потоком, содержащей цилиндрический корпус, статор с находящейся на нем обмоткой и ротор с внешним валом, в статоре, закрепленном в цилиндрическом корпусе индукторной машины и выполненном в конструктивном исполнении торцевого типа, установлена многофазная обмотка, образующая «m» магнитных полюсов, равномерно распределенных по торцевой поверхности статора; ротор представляет собой плоский диск, причем на торцевой стороне диска ротора, обращенного к «m» магнитным полюсам статора, предусмотрено «n» магнитных зубцов, равномерно распределенных по торцевой поверхности ротора; причем в зазор между неподвижными магнитными полюсами статора и подвижными магнитными зубцами ротора установлена дисковая пластина из немагнитного материала, изолирующая внутренний объем цилиндрического корпуса индукторной машины со статором от условий внешней среды, непосредственно в которой размещен безобмоточный ротор с внешним валом индукторной машины.

Кроме этого, межзубцовые зоны «n» магнитных зубцов диска ротора заполнены немагнитным составом.

В качестве немагнитного состава может быть использован немагнитный материал, например, полимерная масса, которая после затвердевания образует монолитную конструкцию торцевой стороны (поверхности) диска ротора, обращенной к «m» магнитным полюсам статора.

Сущность изобретения поясняется графическими материалами.

На фиг. 1 представлен продольный разрез индукторной машины с аксиальным магнитным потоком.

Согласно фиг. 1 индукторная машина с аксиальным магнитным потоком включает цилиндрический корпус 1, многофазную обмотку статора 2, образующую «m» магнитных полюсов статора 3, безобмоточный ротор с внешним валом 4, имеющий «n» магнитных зубцов 5, и дисковую пластину из немагнитного материала 6.

На рис. 1 представлено синтезированные (упрощенное) изображение общего вида индукторной машины с аксиальным магнитным потоком в сборе в ракурсе 3/4 (см. Приложение к данному описанию). Причем для наглядности представления взаимодействия основных составных частей электрической машины (статора и ротора), на рис. 1 в упрощенном представлении конструкции машины умышленно не показаны внешний вал ротора и дисковая пластина из немагнитного материала.

На рис. 2 представлено синтезированное изображение общего вида статора индукторной машины (см. Приложение к данному описанию).

На рис. 3 представлено синтезированное изображение общего вида ротора индукторной машины с внешним валом (см. Приложение к данному описанию).

В исполнении индукторной машины, представленном на рис. 1-3, «m» равно 12, а «n» - 8.

Сущность изобретения состоит в том, что в предлагаемой индукторной машине с аксиальным магнитным потоком за счет того, что обмотки статора изолированы от внешней среды, обеспечивается высокая надежность функционирования в неблагоприятных условиях эксплуатации, а конструктивное исполнение машины предусматривает эффективное охлаждение статора и особенно ротора - в итоге обеспечивает высокую удельную нагрузочную способность индукторной машины в целом.

Предлагаемая индукторная машина работает следующим образом.

Режим двигателя

При поступлении в многофазную обмотку 2, образующую «m» магнитных полюсов статора 3 (см. фиг. 1) питающих напряжений переменного тока, создается вращающее электромагнитное поле, которое взаимодействуя с «n» магнитными зубцами диска ротора, увлекает их за собой, создавая вращающий момент на внешнем валу двигателя 4 (с целью упрощения подшипниковый узел внешнего вала двигателя 4 на фиг. 1 - не показан).

В зависимости от значений питающих напряжения и частоты тока, формируемых преобразователем напряжения (на фиг. 1 - не показан), от которого получает электропитание обмотка статора, двигатель разгоняется, выходит на номинальный режим работы, работает с допустимой перегрузкой и т.д.

Причем в предлагаемой индукторной машине для обеспечения эффективного процесса управления преобразователем напряжения предполагается использование или датчика положения ротора, в том числе бесконтактного типа (на фиг. 1 - не показан) или способа управления, использующего сигналы противо-ЭДС в свободных от тока секциях многофазной обмотки статора 2 (см., например, технические решения, описанные в Патентах РФ на изобретение №2207700 «Способ управления вентильным электродвигателем» и №2458435 «Привод вращения волноводно-щелевой антенны»).

Режим генератора

В режиме генератора осуществляется привод внешнего вала с ротором 4, создающим вращающее магнитное поле, которое в секциях многофазной обмотки статора 2 генерирует ЭДС.

Внутренний объем индукторной машины в цилиндрическом корпусе 1, в котором закреплен статор, выполненный в конструктивном исполнении торцевого типа с установленной многофазной обмоткой 2, надежно изолирован от воздействия внешней среды с помощью дисковой пластины из немагнитного материала 6 (например, из титана, алюминиевого сплава, высокопрочного пластика и т.д.). Кроме этого, пластина 6 обеспечивает также изоляцию от внешней среды остальных отсеков глубоководного аппарата (если это необитаемые отсеки, то с преобразователем напряжения и системой управления, если же обитаемые - то еще и с людьми). «М» магнитных полюсов статора 3 и «n» магнитных зубцов ротора 5 сформированы (навиты) из полосы тонколистовой электротехнической стали. Многофазная обмотка статора 2 образована из катушек, установленных на «m» магнитных полюсах статора 3.

Для повышения надежности функционирования и эффективности отвода тепловой энергии на корпус машины катушки многофазной якорной обмотки статора 2 могут быть пропитаны и залиты, например, немагнитным полимерным составом, обеспечивающим после затвердевания электрическую изоляцию, механическую прочность и теплопроводность. А так как безобмоточный ротор с внешним валом 4 находится непосредственно во внешней среде (зачастую достаточно неблагоприятной, например, агрессивная жидкость перекачивающего насоса, морская вода гребного винта и т.д.), то осуществляется его эффективное охлаждение, что в дополнение к эффективному отводу тепловой энергии от многофазной обмотки статора 2 на корпус машины - обеспечивает высокую удельную нагрузочную способность индукторной машины в целом.

Монолитная конструкция торцевой стороны (поверхности) диска ротора, обращенной к «m» магнитным полюсам статора, образованная в результате заполнения межзубцовых зон «n» магнитных зубцов диска ротора немагнитным материалом, обеспечивает уменьшение значения динамических потерь (гидро- или аэродинамических потерь) при вращении ротора (на фиг. 1 и рис. 1, 3 заполнение межзубцовых зон диска ротора - не показано).

Таким образом, предлагаемая индукторная машина обеспечивает высокую надежность функционирования устройства, агрегата и т.д., приводимого этой машиной в движение (в режиме двигателя), или выработку электроэнергии (в режиме генератора), причем в достаточно жестких (неблагоприятных) условиях эксплуатации.

К техническим результатам, полученным в предлагаемом изобретении, относятся следующие:

- достижение высокой надежности функционирования в жестких (неблагоприятных) условиях эксплуатации индукторной машины, используемой как в качестве двигателя, так и в качестве генератора (так как обмотки статора надежно изолированы от внешней среды) и, в частности, отсутствие необходимости проведения регулярного технического обслуживания узла уплотнения выходного вала в процессе эксплуатации;

- технологичность изготовления и простота сборки, а также высокая ремонтопригодность и, в том числе, небольшие затраты времени при замене вышедших из строя отдельных катушек в обмотках статора (то есть компонентов двигателя-генератора, обладающих наименьшими показателями безотказности);

- в предложенном варианте индукторной машины конструкция ротора с магнитными зубцами значительно проще, чем содержащая обмотки, кроме этого, индукторная машина относится к бесконтактным электрическим машинам, то есть не содержит коллектора или контактных колец, усложняющих эксплуатацию и снижающих надежность;

- в предложенном варианте индукторной машины реализовано эффективное охлаждение статора и особенно ротора, что обеспечивает ее высокую удельную нагрузочную способность в целом;

- предложенный вариант индукторной машины, используемой в качестве электрического двигателя, может питаться как от типового двухзвенного преобразователя (понизитель-повыситель DC/DC плюс инвертор), так и непосредственно от инвертора с ШИМ-регулятором;

- вариант исполнения индукторной машины с заполнением межзубцовых зон ротора немагнитным материалом значительно снижает динамические потери при вращении ротора, что позволяет достичь в предложенном варианте машины высокого КПД.

Промышленная применимость изобретения определяется тем, что предлагаемая индукторная машина может быть изготовлена в соответствии с приведенным описанием и чертежами (см. фиг. 1 и рис. 1-3) на базе известных комплектующих изделий и технологического оборудования.

Таким образом, предлагаемая индукторная машина может быть использована в различных областях (энергетика, горнодобывающая и нефтеперерабатывающая промышленности, жилищно-коммунальное хозяйство, сельское хозяйство, морское и речное судостроение и т.д.) - везде, где в жестких условиях эксплуатации к электроприводам или электрогенераторам предъявляются повышенные требования по надежности, а также по уменьшению трудоемкости технического обслуживания.

На основании вышеизложенного и по результатам проведенного патентно-информационного поиска считаем, что предлагаемая индукторная машина с аксиальным магнитным потоком отвечает критериям «Новизна», «Изобретательский уровень» и «Промышленная применимость» и может быть защищена патентом РФ на изобретение.

Похожие патенты RU2539572C2

название год авторы номер документа
ВЕНТИЛЬНО-ИНДУКТОРНЫЙ ЭЛЕКТРОПРИВОД С ЭКСТРЕМАЛЬНЫМ РЕЖИМОМ РАБОТЫ 2013
  • Темирев Алексей Петрович
  • Цветков Алексей Александрович
  • Киселев Василий Иванович
  • Квятковский Игорь Анатольевич
  • Темирев Алексей Алексеевич
  • Котлов Александр Алексеевич
  • Островский Игорь Павлович
RU2540319C2
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ С МАГНИТНОЙ РЕДУКЦИЕЙ 2015
  • Афанасьев Анатолий Юрьевич
  • Макаров Алексей Витальевич
  • Березов Николай Алексеевич
RU2604058C1
ИНДУКТОРНЫЙ ДВИГАТЕЛЬ 2002
  • Давыдов В.Н.
  • Никифоров Б.В.
  • Апиков В.Р.
  • Байков В.П.
  • Темирев А.П.
  • Лозицкий О.Е.
  • Павлюков В.М.
  • Квятковский И.А.
  • Цветков А.А.
RU2237338C2
БЕСКОНТАКТНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ 2010
  • Чернухин Владимир Михайлович
RU2437201C1
МАГНИТОЭЛЕКТРИЧЕСКАЯ БЕСКОНТАКТНАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ 2010
  • Чернухин Владимир Михайлович
RU2437202C1
БЕСКОНТАКТНАЯ МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ 2010
  • Чернухин Владимир Михайлович
RU2436221C1
БЕСКОНТАКТНАЯ РЕДУКТОРНАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА С АКСИАЛЬНЫМ ВОЗБУЖДЕНИЕМ 2010
  • Чернухин Владимир Михайлович
RU2437199C1
РЕДУКТОРНАЯ МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА С ПОЛЮСНЫМ ЗУБЧАТЫМ ИНДУКТОРОМ 2011
  • Чернухин Владимир Михайлович
RU2478250C1
СИНХРОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 2015
  • Афанасьев Анатолий Юрьевич
  • Берёзов Николай Алексеевич
  • Макаров Алексей Витальевич
  • Сиразетдинов Рифкат Талгатович
  • Деваев Вячеслав Михайлович
RU2588230C1
БЕСКОНТАКТНАЯ РЕДУКТОРНАЯ МАГНИТОЭЛЕКТРИЧЕСКАЯ МАШИНА 2009
  • Чернухин Владимир Михайлович
RU2407135C2

Иллюстрации к изобретению RU 2 539 572 C2

Реферат патента 2015 года ИНДУКТОРНАЯ МАШИНА С АКСИАЛЬНЫМ МАГНИТНЫМ ПОТОКОМ ДЛЯ ЖЕСТКИХ УСЛОВИЙ ЭКСПЛУАТАЦИИ

Изобретение относится к области электротехники, а именно к индукторным машинам с бесконтактной коммутацией, осуществляемой с помощью полупроводниковых приборов, и может быть использовано для электроприводов различного назначения, а также в системах генерации электроэнергии при повышенных требованиях к надежности. Индукторная машина с аксиальным магнитным потоком содержит цилиндрический корпус (1), статор (3) с обмоткой, безобмоточный ротор с внешним валом (4), имеющий «n» магнитных зубцов (5) и дисковую пластину из немагнитного материала (6). Техническим результатом является повышение надежности функционирования в неблагоприятных условиях эксплуатации, а конструктивное исполнение машины предусматривает эффективное охлаждение статора и особенно ротора - в итоге обеспечивающее высокую удельную нагрузочную способность индукторной машины в целом. 1 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 539 572 C2

1. Индукторная машина с аксиальным магнитным потоком, содержащая цилиндрический корпус, статор с находящейся на нем обмоткой и безобмоточный ротор с внешним валом,
отличающаяся тем, что в статоре, закрепленном в цилиндрическом корпусе индукторной машины и выполненном в конструктивном исполнении торцевого типа, установлена многофазная обмотка, образующая «m» магнитных полюсов, равномерно распределенных по торцевой поверхности статора; ротор представляет собой плоский диск, причем на торцевой стороне диска ротора, обращенного к «m» магнитным полюсам статора, предусмотрено «n» магнитных зубцов, равномерно распределенных по торцевой поверхности ротора;
причем в зазор между неподвижными магнитными полюсами статора и подвижными магнитными зубцами ротора установлена дисковая пластина из немагнитного материала, изолирующая внутренний объем цилиндрического корпуса индукторной машины со статором от условий внешней среды, непосредственно в которой размещен безобмоточный ротор с внешним валом индукторной машины.

2. Индукторная машина по п.1, отличающаяся тем, что межзубцовые зоны «n» магнитных зубцов диска ротора заполнены немагнитным составом.

Документы, цитированные в отчете о поиске Патент 2015 года RU2539572C2

Центробежный пеноотделитель 1958
  • Баришполец В.Т.
  • Бубликов А.В.
  • Власов П.А.
  • Коряков-Савойский Б.А.
  • Коряков-Савойский Ю.А.
  • Романенко В.П.
SU117167A1
Устройство для улавливания легких жидкостей с поверхности воды 1933
  • Дехтеренко А.И.
  • Лихонин М.Л.
  • Рысс С.А.
SU36923A1
СИНХРОННЫЙ РЕАКТИВНЫЙ ЭЛЕКТРОДВИГАТЕЛЬ 1994
  • Давыденко О.Б.
  • Литвинов Б.В.
  • Савельев А.В.
  • Шаврин В.А.
RU2057389C1
ЭЛЕКТРОПРИВОД (ВАРИАНТЫ) 1999
  • Лопатинский Эдвард
  • Хиврич С.Ф.
  • Чуриков П.М.
  • Евсеев Р.К.
RU2219642C2
ТОРЦЕВАЯ ЭЛЕКТРИЧЕСКАЯ МАШИНА 2006
  • Встовский Алексей Львович
  • Головин Михаил Петрович
  • Полошков Николай Евгеньевич
  • Головина Людмила Николаевна
  • Коков Сергей Александрович
RU2313888C1
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
DE 3914635 C, 02.08.1990
US 3535604 A1, 20.10.1970

RU 2 539 572 C2

Авторы

Темирев Алексей Петрович

Цветков Алексей Александрович

Киселев Василий Иванович

Квятковский Игорь Анатольевич

Темирев Алексей Алексеевич

Островский Игорь Павлович

Цветков Сергей Алексеевич

Шкурин Алексей Сергеевич

Даты

2015-01-20Публикация

2013-03-22Подача