Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) и гетероструктур соединений A3B5.
Известно, что инжекционные свойства гетероперехода зависят от совершенства границы раздела контактирующих полупроводниковых материалов, обычно содержащей плотность дислокаций Nд<109-1010 см2, большое количество дефектов упаковки Nду>104 см2 и инверсионных доменов. Степень совершенства гетерограниц принято характеризовать скоростью поверхностной рекомбинации [1. Мартынов В.Н., Кольцов Г.И. «Полупроводниковая оптоэлектроника» - М.: Изд-во МИСИС, 1999, стр.84], величина которой определяется соответствием параметров решетки, упругими и термическими коэффициентами контактирующих материалов.
Известны различные способы улучшения внешней квантовой эффективности СИД, в частности нанесением пористого оксида на поверхность гетероструктур [2. Способ изготовления светодиода, патент РФ №2485630 от 04.08.2011], формированием микровыпуклостей, бороздок, микрорельефа на поверхности излучающего слоя [3. Полупроводниковый светоизлучающий прибор и способ его изготовления, патент РФ №2436195 от 26.12.2008; 4. Полупроводниковый элемент, способ изготовления полупроводникового изделия и матрица светоизлучающих диодов, полученная с использованием этого способа изготовления, патент РФ №2416135 от 25.10.2007; 5. Светоизлучающий диод, патент РФ №2231171 от 30.04.2003], а также путем обработки полупроводниковых и диэлектрических структур, в частности облучением потоками электронов, в условиях приложенного электрического поля [6. Способ обработки алмазов, патент РФ №2293148 от 17.07.2002], в электрическом поле при высокой температуре [7. Способ формирования примесных профилей в полупроводниковых материалах, патент РФ №2197571 от 13.09.2000].
Такие способы не обеспечивают получение наилучшего качества границ раздела гетероструктур в светодиодах и соответственно высокую внешнюю квантовую эффективность излучения, поскольку способы [2. Способ изготовления светодиода, патент РФ №2485630 от 04.08.2011; 3. Полупроводниковый светоизлучающий прибор и способ его изготовления, патент РФ №2436195 от 26.12.2008; 4. Полупроводниковый элемент, способ изготовления полупроводникового изделия и матрица светоизлучающих диодов, полученная с использованием этого способа изготовления, патент РФ №2416135 от 25.10.2007; 5. Светоизлучающий диод, патент РФ №2231171 от 30.04.2003; 6. Способ обработки алмазов, патент РФ №2293148 от 17.07.2002] мало влияют на границу раздела между полупроводниковыми слоями светодиода.
Данный недостаток частично устраняется в способе обработки пластин, представленном в патенте, взятом за прототип, в котором [7. Способ формирования примесных профилей в полупроводниковых материалах, патент РФ №2197571 от 13.09.2000] используются электрическое поле величиной E=10-100 В/см и высокая температура T=600-850°C, во время облучения полупроводниковых приборов потоком электронов Ф=1014-1016 эл./см2 с энергией Еэл=0,3-10 МэВ, что позволяет эффективно управлять распределением примеси в полупроводнике. Однако такой способ также не обеспечивает минимальное значение плотности поверхностных состояний Ncc<1011 см-1, плотность дислокаций Nд<109-1010 см2 и дефектов упаковки Nду<104 см2.
Техническим результатом данного изобретения является повышение инжекционной способности и внешней квантовой эффективности гетероструктур светодиодов.
Указанный технический результат достигается тем, что в предлагаемом способе формирования высококачественных гетероструктур светодиодов облучение пластин с гетероструктурами светодиодов производится потоком электронов Ф=1014-1017 эл./см2 при низкой температуре, не превышающей минус 70°С, затем проводят быстрый термический отжиг потоком фотонов видимого спектра мощностью свыше 1 Вт/см2 с энергией, превышающей ширину запрещенной зоны наиболее узкозонного полупроводникового слоя гетероперехода.
Следует отметить, что положительный эффект, но много меньшей величины (на порядок), наблюдается при «обычном» термическом отжиге в диффузионной печи при температуре 450-650°С.
Предлагаемый способ реализуется, например, следующим образом (чертеж 1). Алюминиевую коробку - 1 с тонкими стенками (0,3 мм), содержащую кварцевую лодочку - 2 с пластинами - 3 (не более пяти-шести штук) с гетероструктурами Ga0,67Аl0,33As, охлаждают азотом, поступающим из сосуда Дьюара до температуры ниже минус 70°С, помещают в поток электронного излучения мощностью 1014 эл./cм2ceк с энергией электронов 0,3-10 МэВ и облучают в течение двух часов. Затем пластины освещаются галогеновым вольфрамовым источником, обеспечивающим широкий спектр видимого и инфракрасного диапазона с интенсивностью излучения 1-10 Вт/см2. Процесс формирования структуры составляет 1-2 минуты.
Физическая суть процесса заключается в образовании электронным излучением с энергией, превышающей некое пороговое значение, обычно более 150 кэВ, в полупроводниковом материале точечных дефектов типа вакансия - междоузлие. При этом облучение проводят при возможно более низкой температуре (менее минус 70°С) для того, чтобы данные дефекты не перемещались и не рекомбинировали. При последующем быстром и интенсивном нагреве (более 600°С) происходит перестройка границы раздела между полупроводниками за счет радиационно-стимулированной диффузии атомов по точечным дефектам в наиболее низкое (выгодное) энергетическое состояние.
Проведенные экспериментальные исследования методом РСГУ и CV - характеристик показали, что плотность поверхностных состояний в гетероструктурах типа Ga0,67Al0,33As снижается до уровня Ncc<10-9-10-10 см-1, плотность дислокации Nд<108-109 см2 и дефектов упаковки Nду<102 см2, что приводит к повышению внешней квантовой эффективности и коэффициента инжекции на 20-30%.
название | год | авторы | номер документа |
---|---|---|---|
ИЗЛУЧАЮЩАЯ ГЕТЕРОСТРУКТУРА С ВНУТРЕННИМ УСИЛЕНИЕМ ИНЖЕКЦИИ | 2012 |
|
RU2576345C2 |
СВЕТОИЗЛУЧАЮЩИЙ ДИОД | 1986 |
|
SU1428141A1 |
СПОСОБ ДИАГНОСТИКИ ЭЛЕКТРИЧЕСКИХ МИКРОНЕОДНОРОДНОСТЕЙ В ПОЛУПРОВОДНИКОВЫХ ГЕТЕРОСТРУКТУРАХ НА ОСНОВЕ InGaN/GaN | 2015 |
|
RU2606200C1 |
ПОЛУПРОВОДНИКОВАЯ ГЕТЕРОСТРУКТУРА | 2007 |
|
RU2431218C2 |
ПОЛУПРОВОДНИКОВАЯ ГЕТЕРОСТРУКТУРА | 2005 |
|
RU2376680C2 |
СПОСОБ ИМИТАЦИОННОГО ТЕСТИРОВАНИЯ СТОЙКОСТИ ПРИБОРНОЙ СТРУКТУРЫ К ОБЛУЧЕНИЮ БЫСТРЫМИ НЕЙТРОНАМИ (ВАРИАНТЫ) | 2016 |
|
RU2638107C1 |
СПОСОБ КОНТРОЛЯ ВНУТРЕННЕГО КВАНТОВОГО ВЫХОДА ПОЛУПРОВОДНИКОВЫХ СВЕТОДИОДНЫХ ГЕТЕРОСТРУКТУР НА ОСНОВЕ GaN | 2012 |
|
RU2503024C2 |
СПОСОБ ОБРАБОТКИ МОНОКРИСТАЛЛИЧЕСКИХ ЭПИТАКСИАЛЬНЫХ СЛОЕВ НИТРИДОВ III-ГРУППЫ | 2006 |
|
RU2354000C2 |
ИСТОЧНИК ИЗЛУЧЕНИЯ С УПРАВЛЯЕМЫМ СПЕКТРОМ | 2017 |
|
RU2661441C1 |
ФОТОЛЮМИНОФОР ЖЕЛТО-ОРАНЖЕВОГО СВЕЧЕНИЯ И СВЕТОДИОД НА ЕГО ОСНОВЕ | 2010 |
|
RU2455335C2 |
Изобретение относится к области полупроводниковой оптоэлектроники и может быть использовано для создания высококачественных полупроводниковых светоизлучающих диодов (СИД) на основе гетероструктур соединений A3B5. Способ включает операцию облучения пластин с гетероструктурами интегральным потоком электронов величиной 1014-1017 эл/см2 с энергией 0,3-10 МэВ при температуре, не превышающей минус 70°C, затем проводят быстрый термический отжиг при температуре более 600°С потоком фотонов видимого спектра интенсивностью излучения 1-10 Вт/см с энергией, превышающей ширину запрещенной зоны наиболее узкозонного полупроводникового слоя гетероперехода. Технический результат заключается в повышении инжекционной способности и внешней квантовой эффективности гетероструктур светодиодов. 1 ил.
Способ формирования высококачественных гетероструктур светоизлучающих диодов, содержащий операцию облучения пластин с гетероструктурами интегральным потоком электронов величиной Ф=1014-1017 эл/см2 с энергией Еэл= 0,3-10 МэВ, отличающийся тем, что облучение пластин с гетероструктурами проводят при низкой температуре, не превышающей минус 70°C, затем проводят быстрый термический отжиг при температуре более 600°С потоком фотонов видимого спектра интенсивностью излучения 1-10 Вт/см с энергией, превышающей ширину запрещенной зоны наиболее узкозонного полупроводникового слоя гетероперехода.
СПОСОБ ФОРМИРОВАНИЯ ПРИМЕСНЫХ ПРОФИЛЕЙ В ПОЛУПРОВОДНИКОВЫХ И ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛАХ | 2000 |
|
RU2197571C2 |
СПОСОБ ОБРАБОТКИ ЛАВИННЫХ ДИОДОВ | 1994 |
|
RU2100872C1 |
Способ дезодорации кислот, получаемых окислением нефтяных или им подобных углеводородных масел | 1928 |
|
SU15720A1 |
Авторы
Даты
2015-02-10—Публикация
2013-09-26—Подача