СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА Российский патент 2015 года по МПК H03L7/26 

Описание патента на изобретение RU2541051C1

Изобретение относится к области электротехники и может быть использовано в метрологии для определения частоты и времени, может найти применение в атомных стандартах частоты и атомных часах.

Известен способ формирования высококонтрастного резонанса на сверхтонких переходах основного состояния атома щелочного металла в бихроматическом поле, в котором частотные компоненты одинаково линейно поляризованы. При этом полные угловые моменты сверхтонких компонент в основном состоянии имеют значения F=1 и F=2 для атомов 87Rb, а возбуждение осуществляется через сверхтонкую компоненту с полным угловым моментом F′=1. Обязательным является условие спектрального разрешения сверхтонкой структуры возбужденного состояния. Среди щелочных металлов перечисленные условия в обычных условиях выполняются для атомов 87Rb. Резонанс когерентного пленения населенностей (КПН) может формироваться как на 0-0 переходе, так и на частотах переходов атомов 87Rb: F=2, m=1↔F=1, m=-1 и F=2, m=-1↔F=1, m=1, где F - квантовое число полного углового момента атома, m - квантовое число проекции полного углового атома на направление магнитного поля [RU патент №2312457]. Недостатком этого способа является его сложная техническая реализация.

Известен способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла для стабилизации частоты генератора электромагнитных колебаний, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле, выбранный за прототип. Два сонаправленных лазерных поля с частотами ω1 и ω2, действующие в Л-конфигурации на разрешенные электродипольные переходы F=3<->F′=3 и F=4<->F′=3 (F - квантовое число полного углового момента атома, m - квантовое число проекции полного углового момента атома на направление магнитного поля), создают долгоживущую непоглощающую суперпозицию состояний сверхтонких подуровней атомов 133Cs, находящихся в ячейке с буферным газом [Ж. Кичинг, С. Кнэйп и Л. Холлберг. «Журнал прикладной физики». Том 81, стр. 353, 2002 г.]

Недостатком является необходимость покрывать ячейку антирелаксационным стеночным покрытием или вводить буферный газ, что ведет к удорожанию способа.

Задачей является удешевление способа формирования опорного резонанса.

Для решения задачи предложен способ возбуждения для формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле, в котором резонанс возбуждают лазером, имеющим ширину спектра ГL≤γ, где γ - величина спонтанного распада возбужденного состояния. Ширина лазера является ключевым параметров при формировании резонанса КПН.

Способ может быть реализован как для lin||lin, так и для linlin конфигураций бихроматического лазерного поля при возбуждении резонанса КПН.

При возбуждении лазером с «узким» спектром излучения (т.е. когда выполняется условие ГL≤γ) в лазерном поле взаимодействуют только атомы из одной скоростной группы - "медленные" атомы, которые в основном участвуют в формировании резонанса когерентного пленения населенностей. Поэтому уширение резонанса КПН за счет столкновений со стенками ячейки имеет незначительный вклад и зависимость ширины резонанса КПН от размеров ячейки практически отсутствует. Таким образом, если работать только с "медленными" атомами, то столкновительное уширение со стенками ячейки несет незначительный вклад, что позволяет не покрывать ячейку антирелаксационным стеночным покрытием или вводить буферный газ. Следовательно, отличительный признак является существенным и достаточным для решения задачи.

Способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла осуществляют следующим образом. Возьмем ячейку без антирелаксационного стеночного покрытия, в которую помещены атомы цезия 133Cs при температуре 55°C. Поместим ячейку в магнитное поле 0,02 Гс. На данные атомы направим бихроматическое лазерное поле в ∧-конфигурации, которое резонансно переходам F=3<->F′=3 и F=4<->F′=3 и имеет ширину спектра 4,57 МГц. Величина спонтанного распада для атомов 133Cs на переходе F′=3<->F=3, F′=3<->F=4 составляет 4,57 МГц. Следовательно, выполняется условие ГL≤γ. Лазерное поле имеет интенсивность 1 мкВт.

Результаты численного расчета амплитуды p резонанса когерентного пленения населенностей в ∧-конфигурации от двухфотонной отстройки Ω для различных длин ячеек для случая ячейки без антирелаксационного стеночного покрытия предсталены на фиг.1. Сплошная кривая соответствует ячейке длиной 0,825 см, точечная 1,65 см, пунктирная 2,475 см, штрихпунктирная 3,3 см. Из фиг.1 видно, что не наблюдается какой-либо существенной зависимости ширины резонанса когерентного пленения населенностей от размеров ячейки.

Возьмем ячейку без антирелаксационного стеночного покрытия, в которую помещены атомы рубидия 87Rb при температуре 55°C. Поместим ячейку в магнитное поле 0,05 Гс. На данные атомы направим бихроматическое лазерное поле в ∧-конфигурации, которое резонансно переходам F=1<->F′=2 и F=2<->F′=2 и имеет ширину спектра 2 МГц. Величина спонтанного распада для атомов 133Cs на переходе F′=2<->F=1, F′=2<->F=2 составляет 5,74 МГц. Следовательно, выполняется условие ГL≤γ. Лазерное поле имеет интенсивность 2 мкВт.

Результаты численного расчета амплитуды ρ резонанса когерентного пленения населенностей в ∧-конфигурации от двухфотонной отстройки Ω для различных длин ячеек для случая ячейки без антирелаксационного стеночного покрытия представлены на фиг.2. Сплошная кривая соответствует ячейке длиной 2,2 см, пунктирная 3,3 см, точечная 4,4 см. Из фиг.2 видно, что не наблюдается какой-либо существенной зависимости ширины резонанса когерентного пленения населенностей от размеров ячейки.

Предложенный способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла позволяет использовать ячейки без антирелаксационного покрытия, что ведет к удешевлению способа формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла.

Похожие патенты RU2541051C1

название год авторы номер документа
СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА 2006
  • Юдин Валерий Иванович
  • Тайченачев Алексей Владимирович
  • Зибров Сергей Александрович
  • Величанский Владимир Леонидович
RU2312457C1
СПОСОБ КВАНТОВО-ИНТЕРФЕРЕНЦИОННОГО ОПРЕДЕЛЕНИЯ НАПРАВЛЕНИЯ МАГНИТНОГО ПОЛЯ 2010
  • Величанский Владимир Леонидович
  • Зибров Александр Сергеевич
  • Зибров Сергей Александрович
  • Тайченачев Алексей Владимирович
  • Юдин Валерий Иванович
RU2438140C1
РУБИДИЕВАЯ ЯЧЕЙКА ПОГЛОЩЕНИЯ 2011
  • Гончаренко Михаил Николаевич
  • Жолнеров Вадим Степанович
  • Харчев Олег Прокопьевич
RU2466485C1
МАЛОГАБАРИТНЫЕ АТОМНЫЕ ЧАСЫ С ДВУМЯ ЗОНАМИ ДЕТЕКТИРОВАНИЯ ОПТИЧЕСКОГО ИЗЛУЧЕНИЯ 2023
  • Цыганков Евгений Александрович
  • Величанский Владимир Леонидович
  • Васильев Виталий Валентинович
  • Зибров Сергей Александрович
  • Чучелов Дмитрий Сергеевич
  • Васьковская Мария Игоревна
RU2817140C1
КВАНТОВЫЙ СТАНДАРТ ЧАСТОТЫ 2010
  • Дмитриев Александр Капитонович
  • Гуров Михаил Геннадьевич
  • Кобцев Сергей Михайлович
  • Иваненко Алексей Владимирович
RU2426226C1
АТОМНЫЙ ПУЧКОВЫЙ СТАНДАРТ ЧАСТОТЫ С УДАРНЫМ ВОЗБУЖДЕНИЕМ ЭТАЛОННОГО О-О-ПЕРЕХОДА 1992
  • Пестов Евгений Николаевич
  • Беседина Алла Николаевна
RU2062537C1
Система термостабилизации и магнитного экранирования поглощающей ячейки квантового дискриминатора 2019
  • Игнатович Степан Максимович
  • Вишняков Владислав Игоревич
  • Скворцов Михаил Николаевич
  • Ильенков Роман Ярославович
  • Месензова Ирина Сергеевна
RU2722858C1
Квантовый стандарт частоты с лазерной оптической накачкой 2020
  • Чучелов Дмитрий Сергеевич
  • Зибров Сергей Александрович
  • Васильев Виталий Валентинович
  • Васьковская Мария Игоревна
  • Величанский Владимир Леонидович
  • Мещеряков Вячеслав Викторович
  • Цыганков Евгений Александрович
RU2747165C1
КВАНТОВЫЙ СТАНДАРТ ЧАСТОТЫ НА ОСНОВЕ ЭФФЕКТА КОГЕРЕНТНОГО ПЛЕНЕНИЯ НАСЕЛЕННОСТИ 2013
  • Харчев Олег Прокопьевич
  • Жолнеров Вадим Степанович
RU2529756C1
СПОСОБ УДАРНОГО ВОЗБУЖДЕНИЯ ФАЗОВОЙ КОГЕРЕНТНОСТИ ОДНОВРЕМЕННО ПО КРАЙНЕЙ МЕРЕ В ДВУХ КВАНТОВЫХ СИСТЕМАХ 1991
  • Пестов Евгений Николаевич
RU2009585C1

Иллюстрации к изобретению RU 2 541 051 C1

Реферат патента 2015 года СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА

Изобретение относится к области электротехники и может быть использовано в метрологии для определения частоты и времени, а также найти применение в атомных стандартах частоты и атомных часах. Предложенный способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на использовании эффекта когерентного пленения населенностей в бихроматическом лазерном поле, предусматривает выбор режима возбуждения лазером, имеющим ширину спектра ГL излучения, исходя из условия, при котором ГL ≤ γ, где γ - величина спонтанного распада возбужденного состояния. Предложенный способ при формировании опорного резонанса позволяет использовать ячейки без антирелаксационного покрытия и без буферного газа, что обеспечивает удешевление способа формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла. 2 ил.

Формула изобретения RU 2 541 051 C1

Способ формирования опорного резонанса на сверхтонких переходах основного состояния атома щелочного металла, основанный на эффекте когерентного пленения населенностей в бихроматическом лазерном поле в ячейке, отличающийся тем, что:
резонанс когерентного пленения населенностей возбуждают лазером, имеющим ширину ГL спектра излучения ГL≤γ, где γ - величина спонтанного распада возбужденного состояния.

Документы, цитированные в отчете о поиске Патент 2015 года RU2541051C1

СПОСОБ ФОРМИРОВАНИЯ ОПОРНОГО РЕЗОНАНСА НА СВЕРХТОНКИХ ПЕРЕХОДАХ ОСНОВНОГО СОСТОЯНИЯ АТОМА ЩЕЛОЧНОГО МЕТАЛЛА 2006
  • Юдин Валерий Иванович
  • Тайченачев Алексей Владимирович
  • Зибров Сергей Александрович
  • Величанский Владимир Леонидович
RU2312457C1
Г.А.КАЗАКОВ и др.,"Резонанс когерентного пленения населенностей (электромагнитно-индуцированной прозрачности) в ячейках конечного размера", ж.Технической физики,2008, том.78, выпуск 4, сс.108-113
US 2005062552 A1, 24.03.2005
CN 202998067 U, 12.06.2013
CN 103057004 A, 24.04.2013
JP S63190427 A, 08.08.1988

RU 2 541 051 C1

Авторы

Литвинов Андрей Николаевич

Даты

2015-02-10Публикация

2013-09-30Подача