СПОСОБ КИСЛОТНОГО ПРОДОЛЬНО-ЩЕЛЕВОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА НИЗКОПРОНИЦАЕМОГО ТЕРРИГЕННОГО КОЛЛЕКТОРА Российский патент 2015 года по МПК E21B43/27 

Описание патента на изобретение RU2543004C1

Изобретение относится к нефтегазодобывающей промышленности, а именно к гидравлическому разрыву пласта, в частности заглинизированных низкопроницаемых терригенных отложений, сложенных из влагонабухающих глин.

Сенон-туронские коллекторы газовых скважин на месторождениях севера Западной Сибири относятся к заглинизированным низкопроницаемым терригенным отложениям, сложенным из влагонабухающих глин. Из опыта ремонта скважин в таких отложениях известно, что применение водных растворов ведет к набуханию глин, препятствующих добыче газа из пласта. В то же время проведение кумулятивной перфорации в этих отложениях не обеспечивает необходимую глубину вскрытия пласта и приводит к значительной кольматации призабойной зоны пласта (ПЗП).

Для вскрытия низкопроницаемых терригенных отложений помимо кислотных обработок используют гидравлический разрыв пласта (ГРП) [Ягафаров АК. и др. Интенсификация притоков пластовых флюидов в нефтяных и газовых скважинах. - Тюмень: Изд-во «Вектор Бук», 2010. - 231 с.].

Известен способ гидравлического разрыва пласта низкопроницаемого терригенного пласта, включающий закачивание под давлением жидкости разрыва с образованием трещин разрыва и закрепление образованных трещин разрыва [патент РФ № 2462590, опубл. 2012].

Недостатком этого способа является недостаточная площадь и глубина вскрытия продуктивного пласта, набухание глин, содержащихся в заглинизированных низкопроницаемых терригенных отложениях продуктивного пласта, большая продолжительность удаления расклинивающего материала.

Наиболее близким к предлагаемому изобретению по совокупности признаков (прототипом) является способ гидравлического разрыва пласта низкопроницаемого терригенного пласта, включающий спуск в скважину устройства для прорезания щелей в эксплуатационной колонне, закачивание под давлением жидкости разрыва с образованием трещин разрыва и закрепление образованных трещин разрыва [патент РФ № 2177541, опубл. 2001].

Недостатком этого способа является недостаточная эффективность ГРП в заглинизированных низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин, ведущих к набуханию глин.

Недостатком этого способа является набухание глин, содержащихся в заглинизированных низкопроницаемых терригенных отложениях продуктивного пласта, большая продолжительность удаления расклинивающего материала.

Задача, стоящая при создании изобретения, состоит в повышении эффективности гидравлического разрыва продуктивного пласта в низкопроницаемых терригенных отложениях, сложенных из влагонабухающих глин.

Достигаемый технический результат, который получается в результате применения изобретения, состоит в увеличении площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в этом коллекторе.

Поставленная задача и технический результат решается и достигается соответственно тем, что при кислотном продольно-щелевом гидравлическом разрыве низкопроницаемого терригенного пласта, сложенного влагонабухающими сцементироваными глинами, во внутреннюю полость эксплуатационной колонны спускают гидромеханический щелевой перфоратор, прорезают с помощью вертикально перемещающихся дисков-фрез гидромеханического щелевого перфоратора стенки эксплуатационной колонны с образованием двух продольных щелей, расположенных напротивдруг друга на разных высотных отметках, в интервале от подошвы до кровли продуктивного пласта, закачивают через гидромониторные насадки гидромеханического щелевого перфоратора технологическую жидкость на углеводородной основе и промывают через продольные щели в эксплуатационной колонне посредством технологической жидкости на углеводородной основе, истекающей под давлением, величиной, не превышающей давление гидроразрыва пласта, с образованием фильтрационных каналов в цементном камне за эксплуатационной колонной и окружающей горной породе призабойной зоны пласта, проходящих в глубину продуктивного пласта, после образования фильтрационных каналов из скважины извлекают гидромеханический щелевой перфоратор и в скважину на колонне насосно-компрессорных труб спускают подземное внутрискважинное оборудование, состоящее из пакера высокого давления и циркуляционного клапана, далее запакеровывают пакер над кровлей продуктивного пласта и промывают фильтрационные каналы соляной кислотой 12 %-ной концентрации с продавливанием в глубину продуктивного пласта технологической жидкости на углеводородной основе, ранее закаченной в скважину, после этого заполняют подпакерное пространство скважины, загущенной глинокислотой, состоящей из соляной кислоты 12 %-ной концентрации, фтористоводородной кислоты 3 %-ной концентрации и загустителя - карбоксиметилцеллюлозы, продавливают ее в глубину пласта в качестве жидкости разрыва и расклинивающего материала с образованием трещины разрыва, затем после завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы, далее промывают надпакерное пространство скважины созданием циркуляции в затрубном и трубном пространствах с помощью циркуляционного клапана и осуществляют вызов притока из продуктивного пласта методом снижения противодавления, и после освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования.

На фиг. 1 показана схема реализации заявленного изобретения при прорезании в эксплуатационной колонне продольных вертикальных щелей, на фиг. 2 - то же при промывке и образовании фильтрационных каналов в цементном камне и прилегающей к скважине горной породе струями технологической жидкости на углеводородной основе, на фиг. 3 - то же при промывке образованных фильтрационных каналов соляной кислотой, на фиг. 4 - то же при закачивании загущенной глинокислоты и проведении кислотного гидравлического разрыва пласта, на фиг. 5 - то же при промывке трещин разрыва соляной кислотой с целью разрушения карбоксиметилцеллюлозы, на фиг. 6 - то же при промывке скважины и вызове притока из пласта, на фиг. 7 - то же при эксплуатации скважины после завершения кислотно-щелевого гидравлического разрыва.

Заявленное изобретение осуществляется следующим образом.

В скважину на насосно-компрессорных трубах (НКТ) 1 до кровли продуктивного пласта 2 спускают гидромеханический щелевой перфоратор 3. Выдвигают за габаритные размеры корпуса гидромеханического щелевого перфоратора 3 диски-фрезы 4, расположенные на диаметрально противоположных сторонах корпуса на разных высотных отметках, и продолжают спуск гидромеханического щелевого перфоратора 3 до подошвы продуктивного пласта 2. При возвратно-поступательном движении колонны НКТ 1 с гидромеханическим щелевым перфоратором 3 по обрабатываемому интервалу эксплуатационной колонны 5 от кровли до башмака продуктивного пласта 2 и обратно, с поэтапным увеличением создаваемого давления в колонне НКТ 1 диски-фрезы 4 прорезают стенки эксплуатационной колонны 5 и выходят за ее пределы, формируя продольные щели 6, расположенные напротив друг друга на разных высотных отметках. При этом продольные щели 6 выполнены таким образом, что нижняя кромка верхней щели располагается на уровне середины нижней щели, а верхняя кромка нижней щели - на уровне середины верхней щели. Давление в колонне НКТ 1, воздействующее на диски-фрезы 4, зависит от толщины стенки эксплуатационной колонны 5.

Струи технологической жидкости 7 на углеводородной основе, истекаемые из гидромониторных насадок 8 гидромеханического щелевого перфоратора 3, под высоким давлением, не превышающим давление гидроразрыва пласта, размывают цементный камень 9 за эксплуатационной колонной и прилегающую горную породу призабойной зоны продуктивного пласта 2, в результате образуют фильтрационные каналы 10, представляющие собой вертикальные трещины глубокого проникновения в продуктивный пласт 2. В качестве технологической жидкости 7 применяют жидкости на углеводородной основе, например газоконденсат, нефть, керосин, дизельное топливо, не приводящие к набуханию глинистой составляющей продуктивного пласта 2, такого как туронский коллектор месторождений севера Западной Сибири.

После завершения гидромеханической щелевой перфорации из скважины извлекают гидромеханический щелевой перфоратор 3. В скважину спускают колонну НКТ 1 с пакером высокого давления 11 и циркуляционным клапаном 12, оборудованную на башмаке центрирующей воронкой 13. Пакер высокого давления 11 устанавливают и запакеровывают над кровлей продуктивного пласта 2, герметизируя затрубное пространство 14 скважины между эксплуатационной колонной 5 и колонной НКТ 1 выше продольных щелей 6. Осуществляют промывку фильтрационных каналов 10 соляной кислотой 12 %-ной концентрации 15, продавливая в глубину продуктивного пласта 2 ранее закаченную технологическую жидкость 7 на углеводородной основе.

Далее проводят кислотный гидравлический разрыв продуктивного пласта 2 путем заполнения подпакерного пространства скважины загущенной глинокислотой 16, состоящей из соляной кислоты 12 %-ной концентрации, фтористоводородной кислоты 3 %-ной концентрации и загустителя - карбоксиметилцеллюлозы, последующего продавливания ее через продольные щели 6 и фильтрационные каналы 10 в глубину продуктивного пласта 2 в качестве жидкости разрыва и расклинивающего материала с образованием более глубокой трещины разрыва 17. Особенностью предлагаемого кислотного продольно-щелевого ГРП является то, что он проводится после образования в эксплуатационной колонне 5, цементном камне 9 и прилегающей горной породе ПЗП 2 продольных щелей 6 и продольных фильтрационных каналов 10 на загущенной глинокислоте 16 без применения проппанта в качестве расклинивающего материала.

Скважину оставляют на технологическую выстойку и после завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва 17 соляной кислотой 12 %-ной концентрации 15 с разрушением загустителя - карбоксиметилцеллюлозы.

Далее промывают надпакерное пространство скважины созданием циркуляции в затрубном 14 пространстве скважины и внутренней полости НКТ 1 с помощью открываемого на период циркуляции циркуляционного клапана 12, с одновременным снижением плотности циркулирующей выше пакера высокого давления 11 жидкости и осуществляют вызов притока из продуктивного пласта 2 методом снижения противодавления.

После освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования, включающего центрирующую воронку 13, пакер высокого давления 11 и циркуляционный клапан 12.

Примеры реализации способа.

Пример 1.В скважину спускают гидромеханический щелевой перфоратор фирмы ООО «НЕККО» (г. Екатеринбург) и возвратно-поступательными движениями колонны НКТ диаметром 114 мм по обрабатываемому интервалу эксплуатационной колонны диаметром 168 мм с поэтапным увеличением создаваемого давления от 0 до 15 МПа формируют продольные вертикальные щели, расположенные в эксплуатационной колонне напротив друг друга на разных высотных отметках. Истечением струй газоконденсата из гидромониторных насадок перфоратора под давлением 15 МПа образуют в цементном камне и прилегающей горной породе ПЗП фильтрационные каналы глубиной 1,5 м. После завершения гидромеханической щелевой перфорации осуществляют промывку скважины соляной кислотой 12 %-ной концентрации. Далее через образованные вертикальные трещины проводят кислотный ГРП на загущенной с помощью КМЦ глинокислоте из смеси соляной кислоты 12 %-ной концентрации и фтористоводородной кислоты 3 %-ной концентрации без применения проппанта в качестве расклинивающего материала. Затем после завершения кислотного ГРП и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы. После этого скважину промывают газоконденсатом и оставляют на технологическую выстойку на 24 ч. Скважину осваивают с оставлением спущенного при ГРП пакере марки ПРО-ЯМО и циркуляционном клапане марки ЦК 114x70.

Пример 2. В скважину спускают гидромеханический щелевой перфоратор фирмы ООО «НЕФТЕПРОМЦЕНТР» (Республика Башкортостан, г. Нефтекамск) и возвратно-поступательными движениями колонны НКТ диаметром 102 мм по обрабатываемому интервалу эксплуатационной колонны диаметром 146 мм, с поэтапным увеличением создаваемого давления от 0 до 13 МПа формируют продольные вертикальные щели, расположенные в эксплуатационной колонне напротив друг друга на разных высотных отметках. Истечением струй сырой нефти из гидромониторных насадок перфоратора под давлением 13 МПа образуют в цементном камне и прилегающей горной породе ПЗП фильтрационные каналы глубиной 1,0 м. После завершения гидромеханической щелевой перфорации осуществляют промывку скважины соляной кислотой 12 %-ной концентрации. Далее через образованные вертикальные трещины проводят кислотный ГРП на загущенной с помощью КМЦ глинокислоте из смеси соляной кислоты 12 %-ной концентрации и фтористоводородной кислоты 3 %-ной концентрации без применения проппанта в качестве расклинивающего материала. Затем после завершения кислотного ГРП и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы. После этого скважину промывают сырой нефтью и оставляют на технологическую выстойку на 24 ч. Скважину осваивают с оставлением спущенного при ГРП пакере марки ПРО-ЯДЖ и циркуляционном клапане марки ЦК 102x70.

Пример 3. В скважину спускают гидромеханический щелевой перфоратор фирмы ООО «Комплекс» (г. Екатеринбург) и возвратно-поступательными движениями колонны НКТ диаметром 89 мм по обрабатываемому интервалу эксплуатационной колонны диаметром 140 мм с поэтапным увеличением создаваемого давления от 0 до 10 МПа формируют продольные вертикальные щели, расположенные в эксплуатационной колонне напротив друг друга на разных высотных отметках. Истечением струй дизельного топлива из гидромониторных насадок перфоратора под давлением 10 МПа образуют в цементном камне и прилегающей горной породе ПЗП фильтрационные каналы глубиной 0,5 м. После завершения гидромеханической щелевой перфорации осуществляют промывку скважины соляной кислотой 12 %-ной концентрации. Далее через образованные вертикальные трещины проводят кислотный ГРП на загущенной с помощью КМЦ глинокислоте из смеси соляной кислоты 12 %-ной концентрации и фтористоводородной кислоты 3 %-ной концентрации без проппанта в качестве расклинивающего материала. Затем после завершения кислотного ГРП и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя -карбоксиметилцеллюлозы. После этого скважину промывают дизельным топливом и оставляют на технологическую выстойку на 24 ч. Скважину осваивают с оставлением спущенного при ГРП пакере марки ПРО-ЯМОГ и циркуляционном клапане марки ЦК 89x70.

Особенностью предлагаемого кислотного продольно-щелевого ГРП является то, что он проводится после образования в эксплуатационной колонне, цементном камне и прилегающей горной породе ПЗП продольных щелей и продольных фильтрационных каналов по всей толщине продуктивного пласта от кровли до подошвы на загущенной глинокислоте без применения проппанта в качестве расклинивающего материала, тем самым обеспечивается увеличение площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в этом коллекторе, и снижении стоимости ремонта скважин за счет исключения применения дорогостоящего проппанта в качестве расклинивающего материала и последующего удаления остатков проппанта, не вошедших в трещину разрыва и, порою, перекрывающих ствол скважины до 100 м и более.

Похожие патенты RU2543004C1

название год авторы номер документа
Способ интенсификации работы скважины после её строительства 2019
  • Исмагилов Фанзат Завдатович
  • Лутфуллин Азат Абузарович
  • Хусаинов Руслан Фаргатович
RU2724705C1
СПОСОБ ДОБЫЧИ ТРУДНОИЗВЛЕКАЕМОГО ТУРОНСКОГО ГАЗА 2020
  • Воробьев Владислав Викторович
  • Дмитрук Владимир Владимирович
  • Дубницкий Иван Романович
  • Завьялов Сергей Александрович
  • Касьяненко Андрей Александрович
  • Красовский Александр Викторович
  • Легай Алексей Александрович
  • Медведев Александр Иванович
  • Меньшиков Сергей Николаевич
  • Миронов Евгений Петрович
RU2743478C1
СПОСОБ ВОССТАНОВЛЕНИЯ ОБВОДНЕННОЙ СКВАЖИНЫ 2014
  • Кустышев Денис Александрович
  • Паникаровский Евгений Валентинович
  • Кустышев Александр Васильевич
  • Немков Алексей Владимирович
  • Антонов Максим Дмитриевич
  • Саранчин Максим Владимирович
RU2543005C1
СПОСОБ ПОИНТЕРВАЛЬНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТОВ ГАЗОВОЙ СКВАЖИНЫ 2013
  • Паникаровский Евгений Валентинович
  • Кустышев Денис Александрович
  • Кустышев Александр Васильевич
  • Исакова Ольга Владимировна
RU2534262C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ НИЗКОПРОНИЦАЕМОГО ТЕРРИГЕННОГО ПЛАСТА (ВАРИАНТЫ) 2010
  • Скрылев Сергей Александрович
  • Паникаровский Евгений Валентинович
  • Артеменков Валерий Юрьевич
  • Кустышев Александр Васильевич
  • Паникаровский Валентин Валентинович
  • Немков Алексей Владимирович
  • Кряквин Дмитрий Александрович
  • Кустышев Денис Александрович
  • Рахимов Станислав Николаевич
RU2451175C1
СПОСОБ ПОИНТЕРВАЛЬНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА КАРБОНАТНОГО ПЛАСТА В ГОРИЗОНТАЛЬНОМ СТВОЛЕ СКВАЖИНЫ С ПОДОШВЕННОЙ ВОДОЙ 2014
  • Махмутов Ильгизар Хасимович
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Гирфанов Ильдар Ильясович
  • Мансуров Айдар Ульфатович
RU2558058C1
СПОСОБ ПОИНТЕРВАЛЬНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТОВ НЕФТЕГАЗОВОЙ СКВАЖИНЫ (ВАРИАНТЫ) 2011
  • Кустышев Денис Александрович
  • Филиппов Андрей Геннадьевич
  • Кустышев Александр Васильевич
  • Харахашьян Григорий Феликсович
  • Немков Алексей Владимирович
  • Паникаровский Валентин Валентинович
  • Рахимов Николай Васильевич
  • Ткаченко Руслан Владимирович
  • Федосеев Андрей Петрович
  • Чижов Иван Васильевич
RU2459948C1
Способ гидравлического разрыва пласта в горизонтальном стволе скважины 2016
  • Насыбуллин Арслан Валерьевич
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
RU2613403C1
СПОСОБ МНОГОКРАТНОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА В ОТКРЫТОМ СТВОЛЕ ГОРИЗОНТАЛЬНОЙ СКВАЖИНЫ 2013
  • Рахманов Рафкат Мазитович
  • Исмагилов Фанзат Завдатович
  • Гарифов Камиль Мансурович
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
RU2537719C1
Способ кислотной обработки коллекторов с водонефтяным контактом 2016
  • Ахметгареев Вадим Валерьевич
  • Хисамов Раис Салихович
  • Нугайбеков Ренат Ардинатович
RU2642900C1

Иллюстрации к изобретению RU 2 543 004 C1

Реферат патента 2015 года СПОСОБ КИСЛОТНОГО ПРОДОЛЬНО-ЩЕЛЕВОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА НИЗКОПРОНИЦАЕМОГО ТЕРРИГЕННОГО КОЛЛЕКТОРА

Изобретение относится к нефтегазодобывающей промышленности. Технический результат - увеличение площади и глубины вскрытия продуктивного пласта при устранении условий набухания глин, содержащихся в коллекторе. В способе кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора во внутреннюю полость эксплуатационной колонны спускают гидромеханический щелевой перфоратор, прорезают с помощью вертикально перемещающихся дисков-фрез гидромеханического щелевого перфоратора стенки эксплуатационной колонны с образованием двух продольных щелей, расположенных напротив друг друга на разных высотных отметках, в интервале от подошвы до кровли продуктивного пласта. Закачивают через гидромониторные насадки гидромеханического щелевого перфоратора технологическую жидкость на углеводородной основе и промывают через продольные щели в эксплуатационной колонне посредством технологической жидкости на углеводородной основе, истекающей под давлением, величиной, не превышающей давление гидроразрыва пласта, с образованием фильтрационных каналов в цементном камне за эксплуатационной колонной и окружающей горной породе призабойной зоны пласта, проходящих в глубину продуктивного пласта. После образования фильтрационных каналов из скважины извлекают гидромеханический щелевой перфоратор и в скважину на колонне насосно-компрессорных труб спускают подземное внутрискважинное оборудование, состоящее из пакера высокого давления и циркуляционного клапана. Запакеровывают пакер над кровлей продуктивного пласта и промывают фильтрационные каналы соляной кислотой 12%-ной концентрации с продавливанием в глубину продуктивного пласта технологической жидкости на углеводородной основе, ранее закачанной в скважину. После этого заполняют подпакерное пространство скважины загущенной глинокислотой, состоящей из соляной кислоты 12%-ной концентрации, фтористой кислоты 3%-ной концентрации и загустителя - карбоксиметилцеллюлозы, продавливают ее в глубину пласта в качестве жидкости разрыва и расклинивающего материала с образованием трещины разрыва. После завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12%-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы. Далее промывают надпакерное пространство скважины созданием циркуляции в затрубном и трубном пространствах с помощью циркуляционного клапана и осуществляют вызов притока из продуктивного пласта методом снижения противодавления. После освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования. 3 пр., 7 ил.

Формула изобретения RU 2 543 004 C1

Способ кислотного продольно-щелевого гидравлического разрыва низкопроницаемого терригенного коллектора, при котором во внутреннюю полость эксплуатационной колонны спускают гидромеханический щелевой перфоратор, прорезают с помощью вертикально перемещающихся дисков-фрез гидромеханического щелевого перфоратора стенки эксплуатационной колонны с образованием двух продольных щелей, расположенных напротив друг друга на разных высотных отметках, в интервале от подошвы до кровли продуктивного пласта, закачивают через гидромониторные насадки гидромеханического щелевого перфоратора технологическую жидкость на углеводородной основе и промывают через продольные щели в эксплуатационной колонне посредством технологической жидкости на углеводородной основе, истекающей под давлением, величиной, не превышающей давление гидроразрыва пласта, с образованием фильтрационных каналов в цементном камне за эксплуатационной колонной и окружающей горной породе призабойной зоны пласта, проходящих в глубину продуктивного пласта, после образования фильтрационных каналов из скважины извлекают гидромеханический щелевой перфоратор и в скважину на колонне насосно-компрессорных труб спускают подземное внутрискважинное оборудование, состоящее из пакера высокого давления и циркуляционного клапана, далее запакеровывают пакер над кровлей продуктивного пласта и промывают фильтрационные каналы соляной кислотой 12 %-ной концентрации с продавливанием в глубину продуктивного пласта технологической жидкости на углеводородной основе, ранее закачанной в скважину, после этого заполняют подпакерное пространство скважины загущенной глинокислотой, состоящей из соляной кислоты 12 %-ной концентрации, фтористоводородной кислоты 3 %-ной концентрации и загустителя - карбоксиметилцеллюлозы, продавливают ее в глубину пласта в качестве жидкости разрыва и расклинивающего материала с образованием трещины разрыва, затем после завершения кислотного гидравлического разрыва и закрепления трещины разрыва промывают трещину разрыва соляной кислотой 12 %-ной концентрации с разрушением загустителя - карбоксиметилцеллюлозы, далее промывают надпакерное пространство скважины созданием циркуляции в затрубном и трубном пространствах с помощью циркуляционного клапана и осуществляют вызов притока из продуктивного пласта методом снижения противодавления, и после освоения скважину вводят в эксплуатацию с оставлением в скважине спущенного в процессе гидравлического разрыва подземного внутрискважинного оборудования.

Документы, цитированные в отчете о поиске Патент 2015 года RU2543004C1

СПОСОБ НАПРАВЛЕННОГО ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА 2000
  • Агзамов Ф.А.
  • Акчурин Х.И.
  • Мельников В.М.
  • Сакаев Р.М.
  • Каримов Н.Х.
  • Агзамова Н.Ф.
RU2177541C2
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ТЕРРИГЕННОГО КОЛЛЕКТОРА 2008
  • Лукьянов Юрий Викторович
  • Шувалов Анатолий Васильевич
  • Галлямов Ирек Мунирович
  • Вахитов Тимур Мидхатович
  • Шафикова Елена Анатольевна
RU2386803C1
СПОСОБ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ТЕРРИГЕННОГО ПЛАСТА ГАЗОВОЙ СКВАЖИНЫ В УСЛОВИЯХ АНОМАЛЬНО НИЗКИХ ПЛАСТОВЫХ ДАВЛЕНИЙ 2003
  • Долгов С.В.
  • Гасумов Рамиз Алиджавад Оглы
  • Липчанская Т.А.
  • Зиновьев В.В.
  • Аксютин О.Е.
  • Киселев В.В.
  • Беленко С.В.
RU2261323C1
СПОСОБ УЛУЧШЕНИЯ ГИДРОДИНАМИЧЕСКОЙ СВЯЗИ СКВАЖИНЫ С ПРОДУКТИВНЫМ ПЛАСТОМ 2011
  • Насыбуллин Арслан Валерьевич
  • Салимов Вячеслав Гайнанович
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
RU2462590C1
СПОСОБ ГИДРАВЛИЧЕСКОГО РАЗРЫВА ПЛАСТА 2010
  • Насыбуллин Арслан Валерьевич
  • Салимов Олег Вячеславович
  • Зиятдинов Радик Зяузятович
  • Асадуллин Марат Фагимович
RU2451174C1
СПОСОБ КИСЛОТНОЙ ОБРАБОТКИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2004
  • Паникаровский Валентин Васильевич
  • Щуплецов Владимир Аркадьевич
  • Клещенко Иван Иванович
  • Паникаровский Евгений Валентинович
  • Кузьмич Людмила Ивановна
RU2269648C1
RU 2055172 С1, 27.02.1996
Пресс для выдавливания из деревянных дисков заготовок для ниточных катушек 1923
  • Григорьев П.Н.
SU2007A1
ГЛИНКА Н
Л
Общая химия, Ленинград, "Химия", 1984, с
Приспособление с иглой для прочистки кухонь типа "Примус" 1923
  • Копейкин И.Ф.
SU40A1
ЛОГИНОВ Б
Г
и др
Руководство по кислотным обработкам скважин, Москва, "Недра", 1966, с
Механический грохот 1922
  • Красин Г.Б.
SU41A1

RU 2 543 004 C1

Авторы

Кустышев Александр Васильевич

Паникаровский Евгений Валентинович

Кустышев Денис Александрович

Красовский Александр Викторович

Немков Алексей Владимирович

Антонов Максим Дмитриевич

Исакова Ольга Владимировна

Даты

2015-02-27Публикация

2014-02-12Подача