Изобретение относится к радиоэлектронике и может быть использовано для частотной селекции высокочастотных сигналов в радиотехнических устройствах, телевидении, системах связи и радиоканалах передачи телекоммуникационных данных.
Известен полосно-пропускающий фильтр, выполненный на основе параллельных колебательных контуров с внешними индуктивными или внешними емкостными связями (см. книгу Алексеев Л.В., Знаменский А.Е., Лоткова Е.Д. Электрические фильтры метрового и дециметрового диапазонов. - М.: Связь, 1976, 280 с.; рис.3.1, а, б, стр.85). Эти фильтры содержат несколько связанных параллельных колебательных контуров и широко применяются в метровом и дециметровом диапазоне частот (до 1500 МГц). Основным недостатком данного фильтра является плохая физическая реализуемость элементов параллельных колебательных контуров при узкой полосе пропускания. В соответствии с теорией фильтров соотношение, которое определяет емкость конденсаторов параллельных контуров, имеет вид
где k - номер параллельного контура фильтра; αk - k-ый элемент низкочастотного нормированного прототипа; Δf - полоса пропускания фильтра; R - сопротивление нагрузки для фильтра по входу и выходу.
Как следует из (1), в узкополосных фильтрах при уменьшении полосы пропускания Δf существенно увеличивается требуемая емкость конденсаторов параллельных контуров Ck, что при неизменной резонансной частоте контуров вызывает уменьшение их индуктивностей. В результате чего добротность таких параллельных контуров оказывается низкой. Это приводит к значительному возрастанию прямых потерь в полосе пропускания фильтра.
Несколько меньшими прямыми потерями обладает полосно-пропускающий фильтр, выполненный на основе последовательных колебательных контуров с внутренними емкостными или внутренними индуктивными связями (см. книгу Алексеев Л.В., Знаменский А.Е., Лоткова Е.Д. Электрические фильтры метрового и дециметрового диапазонов. - М.: Связь, 1976, 280 с.; рис.3.1, в, г, стр.85). Величина индуктивности последовательных колебательных контуров определяется следующим известным соотношением:
В соответствии с (2) при уменьшении полосы пропускания Δf существенно возрастает индуктивность Lk, что приводит к уменьшению собственной добротности последовательных колебательных контуров. Это связано с тем, что последовательные колебательные контуры с большой индуктивностью (большим количеством витков) и малой емкостью за счет проявления поверхностного эффекта на высоких частотах обладают низкой добротностью и соответственно достаточно большими прямыми потерями в полосе пропускания фильтра.
Известен также полосно-пропускающий фильтр, являющийся прототипом предлагаемого изобретения (см. книгу Рэд Э. Справочное пособие по высокочастотной схемотехнике: Схемы, блоки, 50-омная техника: Пер. с нем. - М.: 1990 - 256 с., стр.40, рис.1.45, схема в нижнем левом углу) и содержащий первый и второй параллельные контуры с частичным индуктивным включением соответственно по входу и выходу, последовательный контур связи, подключенный также к параллельным контурам с частичным индуктивным включением и настроенный, как и первый и второй параллельные контуры с частичным индуктивным включением на центральную частоту полосы пропускания, при этом коэффициент индуктивного включения последовательного контура связи выбран таким образом, что емкость последовательного контура связи равна емкости параллельных контуров с частичным индуктивным включением.
Положительным свойством прототипа является хорошая физическая реализуемость катушек индуктивности и конденсаторов параллельных контуров с частичным индуктивным включением за счет того, что при частичном включении емкость конденсаторов параллельных контуров существенно уменьшается и соответственно равна
где
Анализ соотношений (1) и (3) показывает, что в узкополосных фильтрах (
Задачей предлагаемого изобретения является уменьшение неравномерности амплитудно-частотной характеристики в полосе пропускания фильтра.
Поставленная задача достигается тем, что в известном фильтре параллельно входу и выходу подключены дополнительные корректирующие конденсаторы, емкость которых равна
где R - значение сопротивления нагрузки для полосно-пропускающего фильтра,
R0 - резонансное характеристическое сопротивление полосно-пропускающего фильтра,
L - индуктивность параллельных контуров с частичным индуктивным включением, при этом индуктивность последовательного контура связи выбрана равной
где
На фиг.1 приведена электрическая принципиальная схема предлагаемого фильтра. На фиг.2 приведена АЧХ фильтра с дополнительными корректирующими конденсаторами (сплошная кривая) и прототипа (пунктирная кривая) при полном включении контура связи. На фиг.3 приведена АЧХ предлагаемого фильтра с дополнительными корректирующими конденсаторами для двух значений индуктивности последовательного контура связи: 1) значением, указанным в формуле изобретения (сплошная кривая), 2) значением, равным индуктивности параллельных контуров с частичным индуктивным включением (пунктирная кривая).
Предлагаемый фильтр (фиг.1) содержит первый и второй параллельные контуры с частичным индуктивным включением 1, 2, последовательный контур связи 3, в котором начало катушки индуктивности 4 соединено с общим корпусом, а ее конец соединен с началом катушки индуктивности 5, конец которой соединен со входом полосно-пропускающего фильтра. Общая точка соединения выводов катушки индуктивности 4 и катушки индуктивности 5 соединена с началом катушки индуктивности 8 последовательного контура связи 3. Начало катушки индуктивности 6 первого параллельного контура с частичным индуктивным включением 1 соединено со входом полосно-пропускающего фильтра, а ее конец подключен к одному из выводов конденсатора 7 первого параллельного контура с частичным индуктивным включением 1, при этом другой вывод конденсатора 7 соединен с общим корпусом. К концу катушки индуктивности 8 последовательного контура связи 3 подключен один вывод конденсатора 9 последовательного контура связи 3, другой вывод которого соединен с концом катушки индуктивности 13 второго параллельного контура с частичным индуктивным включением 2, а начало катушки индуктивности 13 соединено с общим корпусом. Начало катушки индуктивности 11 второго параллельного контура с частичным индуктивным включением 2 подключено к выходу полосно-пропускающего фильтра, а ее конец подключен к одному из выводов конденсатора 10 второго параллельного контура с частичным индуктивным включением 2, при этом другой вывод конденсатора 10 соединен с общим корпусом. Начало катушки индуктивности 12 второго параллельного контура с частичным индуктивным включением 2 подключено к общей точке соединения конденсатора 9 последовательного контура связи 3 и катушки индуктивности 10 второго параллельного контура с частичным индуктивным включением 2, а ее конец подключен к выходу полосно-пропускающего фильтра. Дополнительные корректирующие конденсаторы 14 и 15 включены соответственно между входом и выходом полосно-пропускающего фильтра и общим корпусом.
Отметим, что под соединением с общим корпусом в предлагаемом устройстве понимается общая шина с нулевым потенциалом.
Предлагаемый полосно-пропускающий фильтр работает следующим образом. Как видно из рассмотрения структуры, показанной на фиг.1, полосно-пропускающий фильтр представляет собой классический полиномиальный фильтр третьего порядка, в котором использовано частичное индуктивное включение первого и второго параллельных контуров 1, 2, резонансные частоты которых одинаковы и равны
где L=L1+L2+L3=L4+L5+L6 - индуктивности параллельных контуров с частичным индуктивным включением 1, 2.
Как известно, параллельные контуры с частичным как индуктивным, так и емкостным включением обладают свойствами трансформировать на резонансной частоте подключаемые нагрузки R в величину резонансного характеристического сопротивления R0, то есть обеспечивать заданный коэффициент трансформации. Однако на других частотах значение коэффициента трансформации изменяется. В предлагаемом фильтре влияние частотой зависимости коэффициента трансформации, которую называют частотной дисперсией, компенсируется подключением дополнительных корректирующих конденсаторов 14, 15 и уменьшением индуктивности последовательного контура связи 3 в соответствии с математическим выражением, приведенным в формуле изобретения. Из данного выражения следует, что при Qf>1 выполняется условие L'<L. При уменьшении индуктивности L' увеличивается резонансная частота последовательного контура связи 2. Таким образом, в предлагаемом фильтре параллельные контура с частичным индуктивным включением 1, 2 и последовательный контур связи 3 имеют различные резонансные частоты, что совместно с дополнительными корректирующими конденсаторами 14, 15 обеспечивает уменьшение неравномерности АЧХ в полосе пропускания. Отметим, что при условии R0=R, то есть при полном включении параллельных контуров 1, 2 по входу и по выходу, в соответствии с приведенным в формуле изобретения соотношением, величина емкости дополнительных корректирующих конденсаторов 14, 15 равна нулю. Кроме того, при широкой полосе пропускания
Количественное доказательство того, что в предлагаемом полосно-пропускающем фильтре обеспечивается уменьшение неравномерности АЧХ, проведем с помощью компьютерного моделирования в частотной области для следующих исходных данных: R0=1500 Ом, R=50 Ом, Δf=8 МГц, f0=210 МГц. Для этого примера по методике, приведенной в книге Рэд Э. Справочное пособие по высокочастотной схемотехнике: Схемы, блоки, 50 - омная техника: Пер. с нем. - М.: 1990 - 256 с., и по соотношениям, указанным в формуле изобретения, были рассчитаны значения элементов предлагаемого фильтра, показанного на фиг.1:
С1=С2=С3=11,32 пФ; С4=С5=3,031 пФ; L1=L10=1,993 нГ;
L2=L9=7,277 нГ; L3=L6=41,50 нГ; L=L1+L2+L3=L4+L5+L6=50,77 нГ.
При расчете указанных выше значений элементов фильтра были использованы следующие величины элементов низкочастотного нормированного прототипа: α1=0,8533; α2=1,1036; α3=0,8533.
Поскольку первый и второй параллельные контуры 1, 2 предлагаемого фильтра осуществляют частичное индуктивное включение как для входа (выхода), так и для последовательного контура связи 3, рассмотрим отдельно влияние каждого частичного индуктивного включения на форму АЧХ.
Результаты компьютерного моделирования АЧХ предлагаемого фильтра при полном включении последовательного контура связи 3 и для прототипа приведены на фиг.2 (АЧХ прототипа показана пунктирной линией, а АЧХ предлагаемого фильтра с дополнительными корректирующими конденсаторами 14, 15 показана сплошной линией). Для моделирования использовались S-параметры, которые называют параметрами рассеивания. В частности параметр S21 соответствует коэффициенту передачи и описывает АЧХ фильтра. Как видно из рассмотрения графиков фиг.2, введение дополнительных корректирующих конденсаторов 14, 15, емкость которых выбрана по соотношению, приведенному в формуле изобретения, обеспечивает уменьшение неравномерности АЧХ в полосе пропускания.
Влияние уменьшения индуктивности последовательного контура связи 3 на форму АЧХ показано на графиках фиг.3, полученных также с помощью компьютерного моделирования для приведенных выше параметров предлагаемого фильтра. На фиг.3 пунктирной линией изображена АЧХ при одинаковых значениях индуктивности параллельных контуров с частичным индуктивным включением 1, 2 и индуктивности последовательного контура связи 3. Как видно из рассмотрения фиг.3, АЧХ в этом случае имеет недопустимо большую неравномерность. При выборе индуктивности последовательного контура связи 3 по соотношению, приведенному в формуле изобретения, обеспечивается уменьшение неравномерности АЧХ в полосе пропускания (сплошная кривая на фиг.3). Вместе с тем компьютерное моделирование показало, что АЧХ фильтра получило незначительное смещение вниз по частотной оси на (0,5-1)%, что устраняется увеличением в исходных данных для расчета параметров элементов фильтра на (0,5-1)% значения центральной частоты полосы пропускания f0.
Таким образом, предлагаемый полосно-пропускающий фильтр имеет существенно меньшую неравномерность АЧХ по сравнению с прототипом.
Кроме того, в метровом и дециметровом диапазоне длин волн предлагаемый фильтр при полосе пропускания менее 5% позволяет уменьшить прямые потери за счет высокой добротности параллельных контуров с частичным индуктивным включением 1, 2. Отметим также, что дополнительные корректирующие конденсаторы 14, 15 могут быть выполнены в виде контактных площадок, на которые методом поверхностного монтажа устанавливаются катушки индуктивности и конденсаторы полосно-пропускающего фильтра, что улучшает конструктивную реализацию фильтра. В СВЧ диапазоне настройка полосно-пропускающего фильтра технологически осуществляется за счет изменения индуктивности бескаркасных катушек, а в качестве конденсаторов фильтра используют постоянные конденсаторы. Такой способ настройки позволяет смещать полосу рабочих частот в пределах ±10% по оси частот и обеспечивать точную настройку фильтра на заданную полосу пропускания.
название | год | авторы | номер документа |
---|---|---|---|
УЗКОПОЛОСНЫЙ ФИЛЬТР | 2009 |
|
RU2414024C2 |
УЗКОПОЛОСНЫЙ СВЧ ФИЛЬТР | 2000 |
|
RU2185693C2 |
Активный СВЧ-фильтр | 1988 |
|
SU1566466A1 |
ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР | 2015 |
|
RU2591743C1 |
ПОЛОСОВОЙ ПЕРЕСТРАИВАЕМЫЙ ФИЛЬТР СВЧ | 1991 |
|
RU2065232C1 |
ПЕРЕСТРАИВАЕМЫЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР | 2007 |
|
RU2333594C1 |
ПОЛОСНО-ЗАГРАЖДАЮЩИЙ ФИЛЬТР | 2012 |
|
RU2498464C2 |
КЕРАМИЧЕСКИЙ ПОЛОСНО-ПРОПУСКАЮЩИЙ ФИЛЬТР НА КВАЗИСТАЦИОНАРНЫХ РЕЗОНАТОРАХ | 2014 |
|
RU2557753C1 |
Спиновый модуль | 1989 |
|
SU1695200A1 |
КОАКСИАЛЬНЫЙ РЕЗОНАТОР | 2010 |
|
RU2449432C1 |
Изобретение относится к радиоэлектронике и может быть использовано для частотной селекции высокочастотных сигналов в радиотехнических устройствах, телевидении, системах связи и радиоканалах передачи телекоммуникационных данных. Достигаемый технический результат - уменьшение неравномерности амплитудно-частотной характеристики в полосе пропускания фильтра. Полосно-пропускающий фильтр, содержит первый и второй параллельные контуры с частичным индуктивным включением соответственно по входу и выходу фильтра, резонансная частота f0 которых равна центральной частоте полосы пропускания f0, последовательный контур связи, подключенный также к первому и второму параллельным контурам с частичным индуктивным включением, параллельно входу и выходу полосно-пропускающего фильтра подключены корректирующие конденсаторы, а емкость последовательного контура связи равна емкости параллельных контуров с частичным индуктивным включением. 3 ил.
Полосно-пропускающий фильтр, содержащий первый и второй параллельные контуры с частичным индуктивным включением соответственно по входу и выходу, резонансная частота которых равна центральной частоте полосы пропускания, последовательный контур связи, подключенный также к первому и второму параллельным контурам с частичным индуктивным включением, при этом коэффициент частичного индуктивного включения последовательного контура связи выбран таким образом, что емкость последовательного контура связи равна емкости параллельных контуров с частичным индуктивным включением, отличающийся тем, что параллельно входу и выходу полосно-пропускающего фильтра подключены дополнительные корректирующие конденсаторы, емкость которых равна
,
где R - значение сопротивления нагрузки для полосно-пропускающего фильтра, R0 - резонансное характеристическое сопротивление полосно-пропускающего фильтра, L=L1+L2+L3=L4+L5+L6 - результирующая индуктивность соответственно первого и второго параллельного контура с частичным индуктивным включением, при этом индуктивность последовательного контура связи выбрана равной
,
где - добротность полосно-пропускающего фильтра.
ВЫСОКОИЗБИРАТЕЛЬНЫЙ ПОЛОСОВОЙ ПЕРЕСТРАИВАЕМЫЙ LC-ФИЛЬТР | 2011 |
|
RU2453985C1 |
Способ приготовления лака | 1924 |
|
SU2011A1 |
Авторы
Даты
2015-03-20—Публикация
2013-03-01—Подача