Область техники
Изобретение относится к области гелиоэнергетики, в частности к элементам с концентраторами излучения для получения электрической и тепловой энергии, и может быть использовано при создании высокоэффективных автономных источников электроэнергии.
Предшествующий уровень техники
Из уровня техники известны различные устройства для преобразования солнечной энергии, направленные на повышение концентрации солнечного излучения на солнечных элементах посредством создания отражающих поверхностей и увеличения их площади.
В основном отражающие поверхности формируют на фотоприемном слое, нанесенном на подложку. Среди подобных технических решений можно выделить солнечную батарею, раскрытую в заявке JP 2003158274, опубликованной 30.05.2003, в которой на фотоприемном слое образованы пирамидальные выступы или впадины с размером стороны основания пирамиды 40 µm. Аналогичные решения раскрыты, в частности, в патенте KR 100322711, опубликованном 17.01.2007, где описана солнечная батарея, фотоприемный слой которой выполнен с профилем в виде хаотично расположенных пирамидальных выступов; в патенте US 3,150,999, опубликованном 29.09.1964, где описан преобразователь лучистой энергии, фотоприемный слой которого выполнен с пирамидальными впадинами, и т.д. В известных технических решениях основные модификации микрорельефа по габитусу и технологии получения подразделяют на поверхности вогнутого направленно-профилированного микрорельефа и поверхности выпуклого «спонтанного» микрорельефа. Микрорельеф выполняется в слое поликристаллического кремния толщиной 200-300 мкм, который выращивают на плоской пластине монокристаллического кремния. Сам рельеф получают либо травлением, либо лазерной или механической резкой. Данная технология изготовления микрорельефа является сложным и дорогостоящим процессом. Углы при вершине невозможно изготовить менее 60°, что резко снижает количество переотражений внутри структуры, при этом коэффициент поглощения не превышает 40%.
Недостатками известных устройств являются сложность и, как следствие, высокая себестоимость технологии изготовления профиля фотоприемного слоя, а также невозможность выполнения пирамид с малыми углами при вершине, что приводит к высокому коэффициенту отражения и большой зависимости его от угла падения солнечного излучения.
Из уровня техники известно также устройство для преобразования солнечной энергии, раскрытое в патенте JP 2007265826, опубликованном 11.10.2007, в котором один из элементов многослойной подложки - кремниевое основание - выполняют с пирамидальными углублениями.
К недостаткам данного устройства относятся технологическая сложность изготовления профиля подложки и неудобство при эксплуатации, обусловленное тем, что для монтажа элементов устройства требуются довольно громоздкие и дорогостоящие приспособления.
Наиболее близким к заявленному изобретению является устройство для преобразования солнечной энергии в электрическую, разработанное японским Национальным институтом передовых наук и технологий в промышленности, включающее подложку, фотоприемный слой, нанесенный на поверхность подложки, лицевой и тыльный электроды, контактирующие с лицевой и тыльной сторонами фотоприемного слоя соответственно (http://www.3dnews.ru/news/reshena_problema_proizvodstva_gibkih_solnechnih_batarei/).
Недостатком данного устройства является низкий коэффициент поглощения, обусловленный отсутствием многократного отражения, и, как следствие, низкий КПД устройства.
Раскрытие изобретения
Техническим результатом, на достижение которого направлено заявленное изобретение, является повышение КПД устройства для преобразования солнечной энергии посредством увеличения коэффициента поглощения фотоприемного слоя, снижения зависимости коэффициента поглощения от угла падения солнечного излучения при упрощении технологии изготовления, установки и эксплуатации устройства, снижении его веса и стоимости.
Указанный технический результат достигается за счет того, что устройство с фотоприемным слоем для преобразования солнечной энергии в электрическую содержит, по крайней мере, одну пару подложек, каждая из которых выполнена в виде полосы, при этом, по крайней мере, одна из полос выполнена профилированной с периодическим профилем в ее продольном направлении и переменным профилем - в поперечном направлении, при этом подложки одной пары соединены между собой с возможностью образования профилями, по крайней мере, одного ряда полостей. Полости могут представлять собой конусы и/или пирамиды и/или сферы и/или сфероиды и/или цилиндры и/или усеченные конусы и/или усеченные пирамиды, при этом полости в разных рядах в поперечном направлении могут быть выполнены различной формы.
Указанный технический результат достигается также за счет того, что толщина полосы меньше высоты профиля поперечного и/или продольного сечения этой полосы.
Краткое описание чертежей
Изобретение поясняется чертежами, где:
На фиг.1 в аксонометрии изображена одна пара подложек, каждая из которых выполнена в виде профилированной полосы с периодическим профилем в ее продольном направлении и переменным профилем - в поперечном направлении;
На фиг.2 изображен в аксонометрии общий вид пары подложек в сборе с образованием полостей в виде пирамид;
На фиг.3 - общий вид пары подложек в сборе с образованием полостей в виде конусов;
На фиг.4 изображен в аксонометрии общий вид пары подложек в сборе с образованием в двух рядах в поперечном направлении полостей одинаковой формы в виде усеченных пирамид;
На фиг.5 изображен в аксонометрии общий вид пары подложек в сборе с образованием в двух рядах в поперечном направлении полостей различной формы: в виде усеченных пирамид и сфер;
На фиг.6 изображен продольный разрез устройства с фотоприемным слоем для преобразования солнечной энергии в электрическую, содержащего пару подложек;
На фиг.7 - вид А на фиг.6;
На фиг.8 - вид Б на фиг.6;
На фиг.9 - вид В на фиг.6;
На фиг.10 в аксонометрии изображена пара подложек, одна из которых выполнена в виде гладкой полосы, а вторая - в виде профилированной полосы с периодическим профилем в ее продольном направлении и переменным профилем - в поперечном направлении.
Лучший вариант осуществления изобретения
Устройство с фотоприемным слоем для преобразования солнечной энергии в электрическую содержит, по крайней мере, одну пару подложек (1), в которой, по крайней мере, одна из них выполнена в виде профилированной полосы с периодическим профилем в ее продольном направлении и переменным профилем - в поперечном направлении. На подложки (1) каждой пары нанесен, по крайней мере, один фотоприемный слой (2), с лицевой и тыльной сторонами которого контактируют лицевой (3) и тыльный (4) электроды соответственно.
Пара подложек выполнена сборной из двух, по крайней мере, однослойных полос. При этом возможен вариант, когда одна из полос - гладкая, а вторая - с периодическим профилем. Такой вариант предпочтителен при необходимости формирования полостей в виде трехгранных пирамид. Кроме того, возможен вариант исполнения, при котором используются две профилированные полосы, каждое из продольных сечений которых на одной высоте представляет собой периодическую ломаную линию одного типа. При этом каждое из поперечных сечений полосы представляет собой периодическую ломаную линию, по крайней мере, одного типа, но может представлять собой различные ломаные линии.
Подложки одной пары соединены между собой таким образом, что имеющийся на них профиль образует, по крайней мере, один ряд полостей. Полости могут представлять собой конусы и/или пирамиды (трехгранные, четырехгранные, пятигранные, шестигранные, восьмигранные и т.д.) и/или сферы и/или сфероиды и/или цилиндры. Для обеспечения формирования полостей необходимой формы ломаные линии в поперечном и продольном сечениях полосы, используемой при изготовлении подложки, могут быть зигзагообразные, волнообразные, или представлять собой сочетание различных линий, например зигзаг и прямая, или волнообразная и прямая, или зигзаг и прямая и волнообразная.
Если при сборке образуются один ряд полостей в виде пирамид, то в различных по высоте полосы продольных сечениях сочетание ломаных линий - различно. Сначала зигзаг одинаков - это образует прямой поясок на основании пирамиды; затем при снижении разрезов - зигзаг будет уменьшаться, и начнут появляться прямолинейные участки. По мере снижения разрезов зигзаг будет уменьшаться, а прямолинейные участки будут увеличиваться до тех пор, пока зигзаги полностью не исчезнут.
Если при сборке образуются два ряда полостей в виде пирамид (вторая пирамида образует вторую ловушку), то после того как разрезы снизятся ниже первой пирамидки зигзаги скачкообразно увеличатся, а затем будут вновь уменьшаться.
Если при сборке после первого ряда полостей в виде пирамид выполняется второй ряд полостей в виде сферы или сфероида, то на сечении появятся дугообразные участки вместо зигзагов.
В случае, если обе полосы выполнены профилированными, то каждая из них выполняется методом тиснения на специальных матрицах, позволяющих получить половину требуемой пустотелой сложной пространственной фигуры. Все слои (по крайней мере, один фотоприемный слой, нанесенный на поверхность подложки, лицевой и тыльный электроды, контактирующие с лицевой и тыльной сторонами фотоприемного слоя) наносятся на однослойные листы до или после тиснения, после чего производится сборка устройства. Устройство для преобразования солнечной энергии в электрическую может содержать то число пар подложек, которое требуется в зависимости от условий эксплуатации устройства и его требуемой производительности.
Полости (пустотелые конструкции) предназначены для обеспечения максимально возможного поглощения падающей на фотопоглощающий слой солнечной энергии за счет многократного переотражения и соответственно поглощения излучения внутри полостей (пустотелых конструкций).
При этом при больших углах при вершине конструкций происходит увеличение поглощающей площади относительно габаритных размеров солнечного элемента. С уменьшением угла при вершине конструкций, в зависимости от угла при вершине и угла падения излучения, начинает происходить многократное переотражение излучения внутри пустотелых элементов конструкции, каждый раз с поглощением энергии и чем острее угол, тем больше растет количество переотражений и, соответственно, увеличивается суммарный коэффициент поглощения излучения. Например, для четырехгранных пирамид с углом при вершине 22° и прямом падении света, данная конструкция становится световой ловушкой, т.е. происходит 100% поглощение излучения. Аналогично для трехгранных пирамид: световая ловушка возникает при угле 35° между гранью пирамиды и ее противоположным ребром. Остроконечные конструкции могут иметь различную конфигурацию, однако технологически наиболее выгодно изготавливать трех- или четырехгранные конструкции. Недостатком простых пирамидальных конструкций является то, что начальное падение света происходит при углах, при которых коэффициент преобразования солнечной энергии в электрическую в р-n переходах весьма мал и, соответственно, мал КПД устройства. Организация дополнительных ловушек в виде пирамидок или сфероидов позволяет получить более удачное распределение углов падения света на поверхность полупроводника, что и повышает КПД устройства.
При этом каждая полоса может быть выполнена как из полимерного материала, так и из металла, например, прессованием или способом вакуумного формования полимерных пленок или металлической фольги.
Подложка является основанием, на котором устанавливаются фотоприемный слой (2) и электроды (3) и (4).
В зависимости от материала, из которого изготовлена подложка, определяется необходимость наличия диэлектрического слоя. В случае если подложка (1) изготавливается из металла, на нее наносится диэлектрический слой (5), на который далее последовательно устанавливаются тыльный электрод (4), фотоприемный слой (2) и лицевой электрод (3). При изготовлении подложки (1) из диэлектрического материала на нее далее последовательно устанавливаются тыльный электрод(4), фотоприемный слой (2) и лицевой электрод (3).
Фотоприемный слой (2) может быть выполнен в одно- или многокаскадном исполнении, на основе кремния, диатомовых водорослей и пр., и иметь различные коэффициенты поглощения в различных диапазонах длин волн солнечного спектра.
Выбор материала подложки зависит от типа фотоприемного слоя и способа его нанесения. Например, в случаях высокотемпературных способов создания p-n переходов, в качестве подложки может быть использован металл, например медь, молибден и др.
На поверхность подложки (1) может быть нанесено отражающее покрытие (6). В случае если стенки конструкции выполнены гладкими, оптического качества, то последующие слои, нанесенные, например, напылением в вакууме, имеют высокий коэффициент отражения. В таком случае отражающее покрытие (6), если оно выполнено из металла, например алюминий, серебро и пр., может одновременно выполнять и функции тыльного электрода (4).
На лицевой стороне устройства для преобразования солнечной энергии размещен, по крайней мере, один защитный экран (7), который предназначен для предохранения фотоприемного слоя и электродов от неблагоприятного воздействия внешней среды. В зависимости от конкретных условий работы устройства защитный экран (7) выполняют оптически прозрачным из полимерных материалов (ПВХ, поликарбонат и т.п.) или стекла и, как правило, на его лицевую поверхность наносят пыле- и/или водоотталкивающее и/или износостойкое покрытие (8), которое предназначено для повышения стойкости поверхности к истиранию и царапинам, а также для отталкивания загрязнений и воды от защитного оптически прозрачного экрана. Покрытие (8) предпочтительно выполняют из полиметилметакрилата толщиной 5 мкм.
На тыльную поверхность защитного оптически прозрачного экрана наносят фильтрующий слой (9), который обеспечивает оптимизацию диапазона длин волн солнечного излучения, проходящего через защитный оптически прозрачный экран для различных типов фотоприемного слоя.
В качестве фильтрующих материалов используют, например, различные окислы: Al2O3 (1,59), SiO2 (1,46), TiO2 (2,2-2,6); фториды: MgF2 (1,38), CaF2 (1,24), LiF (1,35); сульфиды: ZnS (2,35), CdS. Выбор конкретного материала зависит от типа фотоприемного слоя и определяется длиной волны спектра, активно поглощаемой фотоприемным слоем. Кроме того, для создания эффекта фильтрации солнечного излучения может быть использован слой голографического тиснения.
Кроме того, устройство может быть снабжено дополнительным защитным экраном (10), размещенным с тыльной стороны устройства и выполненным с отверстиями различной формы для обеспечения вентиляции устройства. Помимо этого, наличие дополнительного экрана (10) позволяет создать с тыльной стороны подложки полости и устройство (11) для подвода хладоагента, например воды, позволяющие обеспечить охлаждение подложки (1). Это имеет существенное значение, поскольку при работе любого солнечного элемента происходит повышение температуры подложки, что снижает электрические характеристики солнечной батареи в целом. При этом введение в полости хладоагента, например воды или воздуха, приводит не только к снижению температуры подложки, но и осуществляет нагрев самого хладагента, например, воды, которая в таком случае является дополнительным продуктом предлагаемого изобретения.
Наличие в устройстве двух экранов, один из которых размещен на лицевой стороне, а второй - на тыльной, позволяет в совокупности с профилированным листом, из которого изготовлена подложка, обеспечить создание конструкции сотовой панели. Данные конструкции имеют высокие прочностные характеристики при малом удельном весе, что оказывается важным при установке устройства и его эксплуатации.
Каждый из защитных экранов (7), (10) может быть соединен с подложкой (1) с обеспечением создания между экраном и подложкой герметичной полости (12). Создание герметичной полости позволяет обеспечить защиту внутренних систем устройства от атмосферного воздействия и создания области пониженного давления. При этом герметичная полость может быть заполнена любым газом. Герметизация может создаваться сваркой материала по внешнему контуру изделия или склеиванием. Это обеспечивает плотное прилегание защитного экрана к сотовой панели и снижает вероятность его отставания в процессе эксплуатации устройства при повышении температуры подложки. При повышении температуры в процессе работы устройства для преобразования солнечной энергии давление внутри герметизированного пространства начинает расти. Для снижения вероятности разгерметизации устройства для преобразования солнечной энергии в этом случае необходимая разница давлений рассчитывается с учетом условий эксплуатации работы в южных или северных климатических зонах.
На внешнем контуре устройства для преобразования солнечной энергии устанавливаются крепежные элементы (13), посредством которых несколько устройств могут быть соединены между собой в единую солнечную батарею требуемых размеров. Крепежные элементы (13) могут изготавливаться в виде кнопочного соединения, например, посредством тиснения рельефа. Кроме того, крепежные элементы (13) могут быть выполнены в виде любых известных соединений, таких как замковые, резьбовые и т.д. В результате, при сборке устройств для преобразования солнечной энергии в солнечную батарею не требуется сложных и материалоемких устройств и приспособлений. Установка на внешнем контуре предлагаемого тонкопленочного устройства для преобразования солнечной энергии крепежных элементов (13) обеспечивает простоту сборки множества устройств для преобразования солнечной энергии в солнечную батарею и, при необходимости, их замену.
Для снятия заряда статического электричества устройство для преобразования солнечной энергии снабжается антистатическим устройством (14), в качестве которого может быть использован, например, антистатический шнур компании «Юман», устанавливаемый на внешнем контуре устройства для преобразования солнечной энергии.
Электрические шины (15 и 16) обеспечивают электрический контакт тыльных и лицевых электродов отдельных устройств при их сборке в большую солнечную батарею. Электрические шины (17 и 18) обеспечивают съем электрической энергии с солнечной батареи.
Устройство с фотоприемным слоем для преобразования солнечной энергии в электрическую работает следующим образом.
Солнечное излучение, попадая внутрь полостей в виде пирамид и/или конусов и/или сфер и/или сфероидов и/или усеченных пирамид и/или усеченных конусов многократно переотражается от стенок полостей. При этом при каждом дополнительном переотражении происходит поглощение света в фотоприемном слое (2) и его преобразование в электрическую энергию. Съем электрической энергии осуществляется посредством лицевого (3) и тыльного (4) электродов, контактирующих соответственно с лицевой и тыльной сторонами фотоприемного слоя (2) и далее через электрические шины (15-18).
Основным недостатком существующих солнечных элементов является большая зависимость коэффициента полезного действия (КПД) от угла падения солнечного излучения. При отклонении излучения от зенита не более чем на 10° начинает резко падать КПД и при углах около 40° устройство практически перестает преобразовывать солнечную энергию. Это приводит к необходимости либо использовать дополнительные дорогостоящие устройства для слежения за солнцем, что возможно только в случае малогабаритных солнечных батарей, либо не менее сложные накопительные устройства, позволяющие накапливать пиковую энергию при нахождении солнца в зените и распределять ее затем в течение суток, что актуально для солнечных электростанций. Наличие же световых ловушек в виде полостей приводит к возможности попадания излучения внутрь конструкции при значительном отклонении солнца от зенита. Так, при угле 20° при вершине четырехгранной пирамиды коэффициент переотражения внутри ее составляет 4,25 для угла отклонения от зенита 70°. Кривая суточного распределения энергии, выдаваемая в течение светового дня, более полого спускается к нулю, обеспечивая повышение общего КПД устройства на 10-60%. Такие устройства, в результате, не требуют слежения за солнцем и накопительных установок, что резко снижает затраты на установку и эксплуатацию устройства.
Профилирование полос, используемых для изготовления подложек в устройстве для преобразования солнечной энергии, выполняется методом тиснения по матрицам в подложке (1), что обеспечивает оптическое качество стенок пустотелых конструкций. При этом изготовление профилированных полос проводится на серийном оборудовании, что значительно снижает себестоимость самой подложки и устройства в целом.
За счет более качественного исполнения рельефа и больших возможностей по глубине профиля в виде полостей (максимальные возможности имеет полость в форме трехгранной пирамиды с углом при вершине менее 30°) возникает повышение КПД, т.к. в данной полости происходит поглощение более 70% падающего излучения. Кроме того, предлагаемое устройство для преобразования солнечной энергии работает и без прямого падения на панель солнечного излучения - только за счет поглощения рассеянного света, и практически не зависит от угла падения света, так как при любом угле падения на него солнечных лучей последние, попадая в пустотелые конструкции, переотражаются на их боковых стенках и перемещаются вглубь фотоприемного слоя в направлении их реальных или воображаемых вершин. Это обеспечивает возможность изготовления двухсторонних устройств, в которых либо обе стороны работают в условиях рассеянного света, либо одна сторона работает при ярком солнечном излучении, а вторая либо от отраженного дополнительным отражающим устройством излучения, например от зеркала, либо от рассеянного излучения.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ (ВАРИАНТЫ) | 1995 |
|
RU2109228C1 |
УСТРОЙСТВО ДЛЯ ПРЕОБРАЗОВАНИЯ СОЛНЕЧНОЙ ЭНЕРГИИ | 2014 |
|
RU2555197C1 |
ГИБКИЙ СВЕТОВОЗВРАЩАЮЩИЙ МАТЕРИАЛ | 2000 |
|
RU2183336C2 |
Солнечная батарея космического аппарата | 2015 |
|
RU2632677C2 |
СПОСОБ ОБНАРУЖЕНИЯ МИНЫ И РАСТЯЖКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2005 |
|
RU2313759C2 |
Тепличный комплекс | 2022 |
|
RU2782323C1 |
Солнечный интенсифицированный тепличный комплекс | 2021 |
|
RU2762363C1 |
СВЕТОВОЗВРАЩАЮЩИЙ ЗНАК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2000 |
|
RU2187152C2 |
МАСКИРОВОЧНАЯ СЕТЬ | 2014 |
|
RU2546470C1 |
ИЗДАНИЕ С ОБЪЕМНЫМИ ИЗОБРАЖЕНИЯМИ (ВАРИАНТЫ) | 1996 |
|
RU2111124C1 |
Изобретение относится к области гелиоэнергетики, в частности к элементам с концентраторами излучения для получения электрической и тепловой энергии, и может быть использовано при создании высокоэффективных автономных источников электроэнергии.
Заявленное устройство с фотоприемным слоем для преобразования солнечной энергии в электрическую содержит, по крайней мере, одну пару подложек, каждая из которых выполнена в виде полосы, при этом, по крайней мере, одна из полос выполнена профилированной с периодическим профилем в ее продольном направлении и переменным профилем - в поперечном направлении, при этом подложки одной пары соединены между собой с возможностью образования профилями, по крайней мере, одного ряда полостей. Полости могут представлять собой конусы и/или пирамиды и/или сферы и/или сфероиды и/или цилиндры и/или усеченные конусы и/или усеченные пирамиды, при этом полости в разных рядах в поперечном направлении могут быть выполнены различной формы. Толщина полосы меньше высоты профиля поперечного и/или продольного сечения этой полосы. Техническим результатом, на достижение которого направлено заявленное изобретение, является повышение КПД устройства для преобразования солнечной энергии посредством увеличения коэффициента поглощения фотоприемного слоя, снижения зависимости коэффициента поглощения от угла падения солнечного излучения при упрощении технологии изготовления, установки и эксплуатации устройства, снижении его веса и стоимости. 3 з.п. ф-лы, 10 ил.
1. Устройство с фотоприемным слоем для преобразования солнечной энергии в электрическую, характеризующееся тем, что содержит, по крайней мере, одну пару подложек, каждая из которых выполнена в виде полосы, при этом, по крайней мере, одна из полос выполнена профилированной с периодическим профилем в ее продольном направлении и переменным профилем - в поперечном направлении, при этом подложки одной пары соединены между собой с возможностью образования профилями, по крайней мере, одного ряда полостей.
2. Устройство по п.1, отличающееся тем, что полости представляют собой конусы и/или пирамиды и/или сферы и/или сфероиды и/или цилиндры и/или усеченные конусы и/или усеченные пирамиды.
3. Устройство по п.1, отличающееся тем, что полости в разных рядах в поперечном направлении выполнены различной формы.
4. Устройство по п.1, отличающееся тем, что толщина полосы меньше высоты профиля поперечного и/или продольного сечения этой полосы.
US 2904612 15.09.1959 | |||
JP 2007265826 A 11.10.2007 | |||
US 3150999 A1 29.09.1964 | |||
ФОТОЭЛЕКТРИЧЕСКАЯ БАТАРЕЯ | 1997 |
|
RU2127470C1 |
Авторы
Даты
2015-03-20—Публикация
2011-09-02—Подача