СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ СТАТИКО-ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК БЕТОНА Российский патент 2015 года по МПК G01N33/38 G01N3/00 

Описание патента на изобретение RU2545781C1

Изобретение относится к строительству, в частности к определению параметров деформирования бетона при статическом нагружении бетонных образцов до уровня, не превышающего предела прочности бетона на сжатие Rb и на растяжение Rbt, динамическом нагружении до разрушения с постоянной скоростью нагружения и динамическом разгружении.

Проектирование железобетонных конструкций ведут с учетом статического приложения нагрузки и дальнейшего ее воздействия, при этом используя призменную прочность бетона, определяемую в ходе постепенного (ступенями) нагружения бетонных образцов с использованием пресса [1]. Недостатком данного способа является относительно невысокая скорость нагружения бетонных призм, не позволяющая судить о деформировании образца при высокоскоростном нагружении. Определение прочности бетона на растяжение осуществляется с использованием разрывной машины, что также не позволяет получить характеристики деформирования образца при высокоскоростном нагружении.

При расчете железобетонных конструкций на взрывные и ударные нагрузки используют величины предела прочности и предельных деформаций бетонных образцов, определяемые в момент их разрушения при динамическом нагружении и превосходящие аналогичные величины, найденные в ходе статического испытания.

Одним из решений, позволяющих проводить испытание бетона на динамические нагружения, является пневмодинамическая установка для высокоскоростного нагружения бетонных призм [2].

Недостатком этого решения является невозможность создания определенного уровня статического нагружения, предшествующего высокоскоростному нагружению бетонной призмы.

Наиболее близким решением к заявленному изобретению является способ экспериментального определения статико-динамических диаграмм бетона, в котором мгновенное или ступенчатое динамическое догружение осуществляется падающим при уменьшении силы тока в электромагните грузом [3].

Недостаток данного решения заключается в неудобстве, в необходимости наличия электромагнитной установки; в невозможности осуществления динамического загружения на заранее заданное перемещение; в невозможности осуществления деформирования образца при высокоскоростном разгружении на заранее заданную величину, отличную от величины догружения; в невозможности многократного динамического загружения образца в чередовании с разгружением; в высокой погрешности получаемых в ходе эксперимента данных.

Технический результат изобретения - упрощение способа испытания, повышение точности получаемых данных, расширение возможностей экспериментального определения статико-динамических характеристик бетона, заключающееся в возможности заранее задавать перемещение в компенсирующем элементе при динамическом нагружении и разгружении.

Технический результат достигается тем, что в способе экспериментального определения статико-динамических характеристик бетона, заключающемся в закреплении опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение нагрузки в процессе нагружения, и регистрации усилия и деформаций призмы во времени с использованием динамометра и тензостанции, согласно изобретению нагружение осуществляют через рычажную систему в два этапа: на первом - ступенчатое статическое нагружение образца до заданного уровня посредством укладки штучных грузов на грузовую платформу, на втором - мгновенное или ступенчатое динамическое догружение или разгружение посредством кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента.

На фиг.1а представлена схема устройства для реализации предлагаемого способа при испытании на растяжение. На фиг.1б представлена схема устройства для испытания на сжатие. На фиг.2а представлена схема смещения оси при осуществлении динамического нагружения при испытании на растяжение. На фиг.2б поясняется способ испытания образца в случае, когда заранее задаются перемещения в компенсирующем элементе при динамическом нагружении. На фиг.3 представлена схема нагрузок, действующих на рычаг при испытании на растяжение.

Специально сконструированная установка включает станину 1, устройства для центрирования и захвата образца 2, рычаг 4 для передачи усилия на испытуемый образец 3, соединенный через стойку 5 со станиной 1, компенсирующий элемент 6, опирающийся на станину 1 и соединенный с рычагом 4 посредством оси 7, металлический шар 10, болт 9, грузовую платформу 8 для приложения статической нагрузки, штучные грузы 11 и гайку 12.

Компенсирующий элемент 6 представляет собой пружину либо динамометрическое кольцо, жесткость которого заранее определяется тарировкой.

Ось 7 представляет собой металлический стержень с разным диаметром поперечных сечений. На половине длины стержня имеется резьба для гайки 12.

Диаметр отверстия в рычаге 4 превышает больший диаметр сечения оси 7. Больший диаметр сечения оси 7 превышает ее меньший диаметр сечения на максимальную величину перемещения рычага 4 вдоль оси компенсирующего элемента 6 в момент динамического нагружения и разгружения.

Металлический шар 10 и различность диаметров сечения оси 7 необходимы для осуществления резкого динамического нагружения и разгружения образца 3. Гайка 12 необходима для того, чтобы при испытании ось 7 не смещалась далее заранее заданной величины.

Болт 9 необходим для ограничения перемещения металлического шара 10 в момент резкого нагружения и разгружения при смещении оси 7, то есть в момент уменьшения или увеличения диаметра сечения оси 7 под шаром 10.

Способ осуществляется следующим образом.

Нагружение осуществляют через рычажную систему в два этапа. На первом этапе создают усилие в компенсирующем элементе 6 посредством укладки штучных грузов 11 на грузовую платформу 8. При этом шар 10 опирается на ось 7 в месте большего сечения оси. На втором этапе закрепляют испытуемый образец 3 в зажимах 2, затем смещают ось 7 так, чтобы шар 10 оказался над меньшим сечением оси, при этом нагрузка, действующая на компенсирующий элемент 6, резко перейдет на образец 3 через рычаг 4, осуществив динамическое нагружение бетонного образца. В случае если перемещение рычага 4 нужно задать заранее, используется гайка 12.

Дальнейшее смещение оси 7 приведет к увеличению диаметра оси под шаром 10 и снятию нагрузки с испытуемого образца.

В процессе проведения испытаний динамометром измеряют усилие, действующее на призму, а параметры деформирования самой призмы при статическом нагружении и динамическом догружении измеряются при помощи тензостанции, оборудованной встроенным тензоусилителем, позволяющим подключать тензодатчики без использования промежуточных усилителей, и имеющей возможность при подключении к компьютеру и использовании специализированного программного обеспечения записывать и отображать преобразованные сигналы нескольких входных каналов в зависимости от времени.

В случае статического нагружения при испытании на растяжение нагрузка, действующая на образец, определяется по формуле:

N = P ( l a ) K b a ,

где P - приложенная нагрузка; K - усилие в компенсирующем элементе; l - длина рычага 4; a, b - расстояния от стойки 5 до образца 3 и до упругого элемента 6 соответственно.

В случае динамического нагружения происходит резкое перераспределение нагрузки с компенсирующего элемента 6 на образец 3.

Примеры

Испытанию на растяжение подвергали образцы прямоугольной формы, длиной 16 см, высотой 4 см и шириной 4 см, изготовленные из мелкозернистого бетона B20 с соотношением В/Ц=0,741, Ц/П=1:3,789.

Расстояние от образца до стойки 5 a=0,1 м =100 мм, от стойки 5 до оси компенсирующего элемента b=0,1 м =100 мм, длина рычага 4 l=0,6 м =600 мм. Элементы передачи усилий выполнены из Ст.3.

1) Нагружение платформы P=200 H. Нагрузка на компенсирующий элемент составила K=1000 Н, деформации компенсирующего элемента равны 0,2 мм. После закрепления образца в зажимах стенда сместили ось 7. Компенсирующий элемент разгрузился, K=0 Н. Динамическое нагружение образца составило N=1000 Н, удлинение образца составило 0,2 мм.

2) Нагружение платформы P=100 H. Нагрузка на компенсирующий элемент составила K=500 Н, деформации компенсирующего элемента равны 0,1 мм. Закрепляем образец в зажимах стенда. Нагружаем платформу до P=200 Н. Общие деформации упругого элемента составили 0,16 мм, деформации образца составили 0,06 мм (статическое нагружение). Усилия в упругом элементе равны 800 H, усилия в образце составили 200 H. Смещаем ось 7, уменьшая ее диаметр. Усилия в образце составили 1000 H (динамическое догружение), усилия в компенсирующем элементе стали равны 200 H. Деформации в образце составили 0,16 мм. При резком смещении оси 7 в сторону увеличения диаметра сечения усилия в образце составили 200 H (разгружение), деформации в образце составили 0,06 мм, при этом усилия в компенсирующем элементе стали равны 800 H.

Из примеров видно, что за счет применения оси с различными диаметрами сечений, осуществляется деформирование образца при резком нагружении на заданную величину. Достигнут технический результат: возможность многократного динамического загружения образца в чередовании с разгружением, достигнута высокая точность получаемых в ходе эксперимента данных.

1. ГОСТ 24452-80 Бетоны. Методы определения призменной прочности, модуля упругости и коэффициента Пуассона. - М.: НИИЖБД. 1982. - 15 с.

2. Баженов. Ю.М. Бетон при динамическом нагружении. - М.: Стройиздат, 1970. - 272 с.

3. Патент РФ №2482480, кл. G01N 3/00, 2006.

Похожие патенты RU2545781C1

название год авторы номер документа
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ СТАТИКО-ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК БЕТОНА В УСЛОВИЯХ ЦИКЛИЧЕСКИХ НАГРУЖЕНИЙ 2013
  • Черноусов Николай Николаевич
  • Черноусов Роман Николаевич
  • Суханов Андрей Владимирович
  • Прокофьев Александр Николаевич
  • Ливенцева Виктория Андреевна
RU2547348C1
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ СТАТИКО-ДИНАМИЧЕСКИХ ДИАГРАММ БЕТОНА И КОЭФФИЦИЕНТА ДИНАМИЧЕСКОГО УПРОЧНЕНИЯ БЕТОНА С УЧЕТОМ ТРЕЩИНООБРАЗОВАНИЯ 2011
  • Клюева Наталия Витальевна
  • Шувалов Константин Александрович
RU2482480C1
Способ экспериментального определения статико-динамических характеристик бетона 2019
  • Федорова Наталия Витальевна
  • Медянкин Михаил Дмитриевич
RU2696815C1
СПОСОБ ИСПЫТАНИЯ ОБРАЗЦОВ СТРОИТЕЛЬНЫХ МАТЕРИАЛОВ НА РАСТЯЖЕНИЕ 2013
  • Черноусов Николай Николаевич
  • Черноусов Роман Николаевич
  • Суханов Андрей Владимирович
  • Прокофьев Александр Николаевич
RU2544299C2
СПОСОБ ОПРЕДЕЛЕНИЯ ПРЕДЕЛА ВЫНОСЛИВОСТИ МАТЕРИАЛА 2009
  • Черноусов Николай Николаевич
  • Черноусов Роман Николаевич
RU2416086C1
УСТРОЙСТВО ДЛЯ ИСПЫТАНИЯ ОБРАЗЦОВ МАТЕРИАЛОВ НА СОВМЕСТНОЕ ДЕЙСТВИЕ УСИЛИЙ РАСТЯЖЕНИЯ, СРЕЗА И ИЗГИБА 2013
  • Черноусов Николай Николаевич
  • Черноусов Роман Николаевич
  • Суханов Андрей Владимирович
  • Прокофьев Александр Николаевич
RU2548391C1
СПОСОБ ИСПЫТАНИЯ КАРКАСНОЙ ЯЧЕЙКИ ЗДАНИЯ 2007
  • Шичкин Александр Иванович
  • Рагозин Александр Николаевич
  • Озеров Владимир Александрович
  • Швец Александр Валерьевич
RU2331858C1
СПОСОБ ИСПЫТАНИЯ ДИСПЕРСНО-АРМИРОВАННЫХ БЕТОНОВ НА РАСТЯЖЕНИЕ 2009
  • Черноусов Николай Николаевич
  • Черноусов Роман Николаевич
RU2402008C1
СПОСОБ ИСПЫТАНИЯ КОНСТРУКЦИЙ И УСТАНОВКА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Анпилов Сергей Михайлович
  • Ерышев Валерий Алексеевич
  • Рыжков Андрей Сергеевич
  • Мурашкин Василий Геннадьевич
  • Латышева Екатерина Валерьевна
  • Тошин Дмитрий Сергеевич
RU2530470C2
СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ ДИНАМИЧЕСКИХ ДОГРУЖЕНИЙ В ЖЕЛЕЗОБЕТОННЫХ РАМНО-СТЕРЖНЕВЫХ СИСТЕМАХ ОТ ВНЕЗАПНОГО ВЫКЛЮЧЕНИЯ ЛИНЕЙНОЙ СВЯЗИ 2009
  • Клюева Наталия Витальевна
  • Бухтиярова Анастасия Сергеевна
RU2437074C2

Иллюстрации к изобретению RU 2 545 781 C1

Реферат патента 2015 года СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ СТАТИКО-ДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК БЕТОНА

Изобретение относится к области строительства, в частности к испытанию строительных материалов на прочность при растяжении и сжатии, и может быть использовано для определения параметров деформирования бетона при статическом и динамическом приложении нагрузки. Способ осуществляют закреплением опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение растягивающей нагрузки в процессе нагружения, и регистрацией усилия и деформаций образца во времени с использованием динамометра и тензостанции при нагружении, осуществляемом через рычажную систему в два этапа: на первом - ступенчатое статическое нагружение образца до заданного уровня посредством укладки штучных грузов на грузовую платформу, на втором - мгновенное или ступенчатое динамическое догружение или разгружение посредством кратковременного изменения диаметра оси в точке передачи силы от рычага компенсирующему элементу, задавая в случае необходимости величину перемещений в упругом элементе. Достигается упрощение методики и повышение достоверности и надежности результатов испытаний. 5 ил., 2 пр.

Формула изобретения RU 2 545 781 C1

Способ экспериментального определения статико-динамических характеристик бетона, заключающийся в закреплении опытного бетонного образца в виде призмы в зажимах испытательного стенда с использованием центрирующего устройства, обеспечивающего центральное приложение нагрузки в процессе нагружения, и регистрации усилия и деформаций призмы во времени с использованием динамометра и тензостанции, отличающийся тем, что нагружение осуществляют через рычажную систему в 2 этапа: на первом - ступенчатое статическое нагружение образца до заданного уровня посредством укладки штучных грузов на грузовую платформу, на втором - мгновенное или ступенчатое динамическое догружение или разгружение посредством кратковременного изменения диаметра оси в месте соединения рычага и компенсирующего элемента, задавая, в случае необходимости, величину перемещений в данном элементе.

Документы, цитированные в отчете о поиске Патент 2015 года RU2545781C1

СПОСОБ ЭКСПЕРИМЕНТАЛЬНОГО ОПРЕДЕЛЕНИЯ СТАТИКО-ДИНАМИЧЕСКИХ ДИАГРАММ БЕТОНА И КОЭФФИЦИЕНТА ДИНАМИЧЕСКОГО УПРОЧНЕНИЯ БЕТОНА С УЧЕТОМ ТРЕЩИНООБРАЗОВАНИЯ 2011
  • Клюева Наталия Витальевна
  • Шувалов Константин Александрович
RU2482480C1
Способ определения длительной прочности бетона 1981
  • Бычков Александр Сергеевич
  • Гусаков Виктор Никанорович
  • Лебедев Виктор Иванович
  • Розовский Евгений Лазаревич
  • Турко Остап Григорьевич
  • Харичев Игорь Александрович
SU977991A1
RU 2002264 C1, 30.10.1993
СПОСОБ ОПРЕДЕЛЕНИЯ ДЛИТЕЛЬНОЙ ПРОЧНОСТИ БЕТОНА 1994
  • Несветаев Григорий Васильевич
RU2084857C1
Способ определения прочности бетона 1990
  • Ерусалимский Юрий Зиновьевич
  • Меликов Владимир Павлович
SU1803776A1
БАЖЕНОВ Ю.М
Бетон при динамическом нагружении
" М, Стройиздат,
Кинематографический аппарат 1923
  • О. Лише
SU1970A1
Приспособление для воспроизведения изображения на светочувствительной фильме при посредстве промежуточного клише в способе фотоэлектрической передачи изображений на расстояние 1920
  • Адамиан И.А.
SU172A1

RU 2 545 781 C1

Авторы

Черноусов Николай Николаевич

Черноусов Роман Николаевич

Суханов Андрей Владимирович

Прокофьев Александр Николаевич

Ливенцева Виктория Андреевна

Даты

2015-04-10Публикация

2013-09-17Подача