Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры.
С внедрением светодиодов связаны перспективы развития целого ряда направлений: сигнальных световых и осветительных приборов на транспорте, оборудования для световой архитектурно-декоративной подсветки и рекламы и др. Одним из важнейших социально-экономических эффектов масштабного использования светодиодных технологий является возможность радикального сокращения затрат электроэнергии на освещение, составляющих по различным оценкам до 18-20% всех затрат произведенной электроэнергии. Длительность безотказной работы, оптическая мощность излучения, цветовая температура и другие выходные характеристики светодиодов тесно связаны с температурой р-n перехода, что делает разработку системы охлаждения важным этапом создания светодиодных систем.
Известна плоская тепловая труба [US 3613778, 19.10.1971, B64G 1/50; B64G 1/58; F28D 15/02], заполненная пористым металлическим фитилем или сеткой в паровом канале.
Толщина фитиля способствует увеличению теплопередающей способности тепловой трубы. Однако с ростом толщины фитиля увеличивается его термическое сопротивление в радиальном направлении, что препятствует росту теплопередающей способности трубы в целом и снижает допустимую максимальную плотность теплового потока в испарителе.
Известно устройство для охлаждения электронных компонентов [US 4975803, 04.12.1990, Н05К 7/20], которое имеет сэндвич конструкцию и представляет собой заключенные в металлический корпус (параллелепипед) множество пластин, параллельных плоскости установки электронных компонентов и выполненных из пористого материала с диагональными микроканалами, причем микроканалы соседних пластин имеют противоположные направления. Пористое ядро с микроканалами заполнено жидким теплоносителем. Тепло передается на торцевые части корпуса, где находится радиатор.
В такой конструкции отвод тепла в основном на торцевую часть не обеспечивает эффективную теплоотдачу к радиатору. Эффективная теплопроводность насыщенного жидкостью пористого материала в направлении, перпендикулярном плоскости установки электронных компонентов, существенно меньше, чем в направлении, параллельном плоскости установки электронных компонентов.
Наиболее близким по технической сущности к заявляемой системе является устройство охлаждения тепловыделяющих компонентов модуля радиоэлектронной аппаратуры [RU 2403692, 29.04.2009, Н05К 1/00, Н05К 7/20], состоящее из теплоотводящего основания, печатных плат и установленных на них электрорадиоэлементов. Теплоотводящее основание выполнено из микропористого материала с микроканалами и заполнено жидким теплоносителем. Микроканалы расположены в теплоотводящем основании в двух ортогональных направлениях, параллельных плоскости печатной платы. Тепло передается на торцевую часть теплоотводящего основания.
Однако отвод тепла в основном на торцевую часть теплоотводящего основания не обеспечивает эффективную теплоотдачу к радиатору, примыкающему к плоскости печатной платы.
Задачей настоящего изобретения является обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов.
Поставленная задача решается тем, что в интенсифицированной испарительной системе охлаждения светодиодного модуля, состоящей из основания с установленными на нем светодиодами, к которому примыкает слой теплоотводящего наполнителя из микропористого материала с каналами, заполненного жидким теплоносителем, согласно изобретению основание, на котором установлены светодиоды, выполнено из высокотеплопроводного материала, к теплопроводящему основанию примыкает наполнитель из микропористого материала, который находится в объеме, ограниченном теплопроводящим основанием и радиатором, поверхность которого покрыта тонким слоем непористого теплопроводного материала, в микропористом наполнителе под светодиодами перпендикулярно плоскости установки светодиодов расположены миниканалы, причем они расположены так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения, отношение глубины к ширине которых на периферии составляет 1, а в центре - 2.
Согласно изобретению теплопроводящее основание интенсифицированной испарительной системы охлаждения светодиодного модуля выполнено из металла или металлокерамики, при этом радиальное оребрение нанесено непосредственно на теплопроводящее основание.
Согласно изобретению теплопроводящее основание интенсифицированной испарительной системы охлаждения светодиодного модуля выполнено из материала, имеющего структуру изолированных проводников внутри металла, например, изготовленного по технологии ALOX™. В этом случае между теплопроводящим основанием интенсифицированной испарительной системы охлаждения светодиодного модуля и микропористым наполнителем может быть установлена металлическая накладка, на которую в областях, примыкающих к торцам миниканалов, нанесено радиальное оребрение.
Наличие объема, заполненного микропористым материалом, облегчает задачу его наполнения необходимым объемом жидкости, а наличие миниканалов с интенсифицирующей поверхностью теплообмена на торцах, расположенной в максимальной близости к р-n переходам светодиодов, обеспечивает высокое значение отводимых тепловых потоков от каждого из светодиодов.
На фиг.1 изображена система охлаждения светодиодного модуля. Где: 1 - теплопроводящее основание, 2 - светодиоды, 3 - наполнитель из микропористого материала, 4 - ребра радиатора, 5 - миниканалы, 6 - интенсифицирующая поверхность теплообмена.
На фиг.2 показан вид интенсифицирующей поверхности теплообмена с радиальным треугольным оребрением (вид со стороны миниканала).
В предлагаемой конструкции система охлаждения светодиодного модуля состоит из теплопроводящего основания 1, на которое установлены светодиоды 2, с другой стороны к теплопроводящему основанию примыкает наполнитель из микропористого материала 3. Микропористый наполнитель 3 находится в объеме, ограниченном теплопроводящим основанием 1 и ребрами радиатора 4. Поверхность радиатора 4, который может быть выполнен из пористого материала, покрыта тонким слоем непористого теплопроводного материала. Миниканалы 5 расположены в микропористом наполнителе 3 под светодиодами перпендикулярно плоскости установки светодиодов. Части теплопроводящего основания, являющиеся торцами миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена 6 (поверхность, интенсифицирующую кипение и испарение), интенсифицируемую за счет радиального оребрения, фиг.2. Оребрение интенсифицирующей поверхности теплообмена 6 представляет собой радиальные микроканалы треугольного сечения. Отношение глубины к ширине каждого из радиальных микроканалов на периферии составляет 1, а в центре - 2.
Размеры микроканалов интенсифицирующей поверхности теплообмена меньше размеров пор наполнителя из микропористого материала, что создает необходимый капиллярный напор. Дополнительный капиллярный напор создается также за счет того, что размеры микроканалов интенсифицирующей поверхности уменьшаются по направлению к центру тепловыделяющего светодиода, что особенно важно при высоких тепловых потоках.
В процессе функционирования интенсифицированной испарительной системы охлаждения светодиодного модуля светодиоды выделяют тепло (зона нагрева), которое передается на торцы миниканалов. Зона охлаждения системы представляет собой поверхность радиатора. Для того, чтобы обеспечить передачу тепла, выделяемого светодиодами, в зону охлаждения, микропористый наполнитель 3 с миниканалами 5, находящийся в объеме, ограниченном теплопроводящим основанием 1 и ребрами радиатора 4, заполнен жидким теплоносителем, например водой. Микропористый наполнитель 3 насыщен теплоносителем в жидкой фазе, а в миниканалах 5 теплоноситель находится в паровой фазе. Теплоноситель осуществляет передачу тепла из зоны нагрева светодиода в зону охлаждения за счет скрытой теплоты парообразования. Тепло, поступающее в зону нагрева от светодиодов, вызывает испарение теплоносителя. На поверхности 6, интенсифицирующей кипение и испарение за счет радиального оребрения, кипение начинается при существенно меньших температурах перегрева, а коэффициент теплоотдачи значительно выше, чем на гладкой поверхности.
Возникающая при этом разность давлений побуждает пар двигаться из зоны нагрева в зону охлаждения, где пар конденсируется, отдавая при этом скрытую теплоту парообразования. В результате постоянного испарения количество жидкости в зоне нагрева уменьшается, и поверхность раздела фаз жидкость-пар сдвигается внутрь микропористого наполнителя 3, что вызывает возникновение здесь капиллярного давления. Это капиллярное давление заставляет сконденсировавшуюся в зоне охлаждения жидкость возвращаться обратно в зону нагрева. Таким образом, непрерывно осуществляется перенос тепла из зоны нагрева в зону охлаждения.
Дополнительный капиллярный напор возникает за счет того, что размеры микроканалов интенсифицирующей поверхности теплообмена существенно меньше размеров пор наполнителя из микропористого материала и еще уменьшаются по направлению к центру тепловыделяющего светодиода, что особенно важно при высоких тепловых потоках.
При осушении микроканалов в центральной части интенсифицирующей поверхности капиллярный напор возрастает, обеспечивая более интенсивный подвод жидкости к окрестности светодиода и соответственно более высокие значения отводимых тепловых потоков.
Таким образом, обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается тем, что интенсивное кипение и испарение жидкости происходит вблизи р-n перехода светодиодов на интенсифицированной оребренной поверхности, размеры микроканалов которой существенно меньше пор микропористого материала, что обеспечивает высокий капиллярный напор.
Также обеспечение высокоэффективного отвода тепла от полупроводниковых светодиодов при минимальном значении сопротивления теплопередачи достигается за счет высокого значения эффективной теплопроводности вдоль каналов (тепловых труб), которое более чем на два порядка превосходит теплопроводность современных печатных плат.
Одной из технических проблем использования тепловых труб является необходимость заполнения каждой трубы точно определенным объемом жидкости при одновременном вакуумировании. Предложенная конструкция требует одноразового заполнения жидкостью и менее чувствительна к вариациям первоначального объема жидкости.
Работоспособность предложенной конструкции системы охлаждения светодиодного модуля подтверждается экспериментальными данными и выполненными оценками и расчетами.
название | год | авторы | номер документа |
---|---|---|---|
УСТРОЙСТВО ОХЛАЖДЕНИЯ ОДИНОЧНОГО МОЩНОГО СВЕТОДИОДА С ИНТЕНСИФИЦИРОВАННОЙ КОНДЕНСАЦИОННОЙ СИСТЕМОЙ | 2016 |
|
RU2636385C1 |
ИНТЕНСИФИЦИРОВАННАЯ СИСТЕМА ОХЛАЖДЕНИЯ ОДИНОЧНОГО МОЩНОГО СВЕТОДИОДА | 2015 |
|
RU2621320C1 |
ИСПАРИТЕЛЬНАЯ СИСТЕМА ОХЛАЖДЕНИЯ СВЕТОДИОДНОГО МОДУЛЯ | 2013 |
|
RU2551137C2 |
СИСТЕМА ОХЛАЖДЕНИЯ СВЕТОДИОДНОГО МОДУЛЯ | 2012 |
|
RU2510732C2 |
Светодиодный фитосветильник с системой охлаждения | 2020 |
|
RU2755678C1 |
Светодиодный светильник с жидкостным охлаждением | 2020 |
|
RU2775103C2 |
СВЕТОДИОДНЫЙ СВЕТИЛЬНИК И СПОСОБ ОХЛАЖДЕНИЯ СВЕТОДИОДНОГО ИСТОЧНИКА СВЕТА | 2015 |
|
RU2590824C1 |
СВЕТОДИОДНАЯ ЛАМПА | 2009 |
|
RU2418345C1 |
СВЕТОДИОДНАЯ ЛАМПА | 2014 |
|
RU2574858C2 |
СВЕТОДИОДНЫЙ СВЕТИЛЬНИК | 2014 |
|
RU2572092C2 |
Изобретение относится к радиоэлектронике, в частности к охлаждению тепловыделяющих элементов электронной аппаратуры. Технический результат - обеспечение высокоэффективного отвода тепла при минимальном значении сопротивления теплопередачи от каждого из собранных в модуль полупроводниковых светодиодов. Достигается тем, что интенсифицированная испарительная система охлаждения светодиодного модуля состоит из высокотеплопроводного основания, выполненного из металла, металлокерамики или материала, имеющего структуру изолированных проводников внутри металла, с установленными на нем светодиодами, к которому примыкает наполнитель из микропористого материала с миниканалами, расположенными под светодиодами перпендикулярно плоскости их установки так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения, отношение глубины к ширине которых на периферии составляет 1, в центре - 2. 6 з.п. ф-лы, 2 ил.
1. Интенсифицированная испарительная система охлаждения светодиодного модуля, состоящая из основания с установленными на нем светодиодами, к которому примыкает слой теплоотводящего наполнителя из микропористого материала с каналами, заполненного жидким теплоносителем, отличающаяся тем, что основание выполнено из высокотеплопроводного материала, примыкающий к теплопроводящему основанию наполнитель из микропористого материала находится в объеме, ограниченном теплопроводящим основанием и радиатором, поверхность которого покрыта тонким слоем непористого теплопроводного материала, в микропористом наполнителе под светодиодами перпендикулярно плоскости установки светодиодов расположены миниканалы, причем они расположены так, что части теплопроводящего основания, примыкающие к торцам миниканалов, образуют в максимальной близости к р-n переходам светодиодов интенсифицирующую поверхность теплообмена, интенсифицируемую за счет радиального оребрения, представляющего собой микроканалы треугольного сечения.
2. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 1, отличающаяся тем, что отношение глубины к ширине радиальных микроканалов интенсифицирующей поверхности теплообмена на периферии составляет 1, в центре - 2.
3. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 1, отличающаяся тем, что теплопроводящее основание выполнено из металла или металлокерамики.
4. Интенсифицированная испарительная система охлаждения светодиодного модуля по пп. 1 или 3, отличающаяся тем, что радиальное оребрение нанесено непосредственно на теплопроводящее основание.
5. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 1, отличающаяся тем, что теплопроводящее основание выполнено из материала, имеющего структуру изолированных проводников внутри металла.
6. Интенсифицированная испарительная система охлаждения светодиодного модуля по пп. 1 или 5, отличающаяся тем, что между теплопроводящим основанием и микропористым наполнителем установлена металлическая накладка.
7. Интенсифицированная испарительная система охлаждения светодиодного модуля по п. 6, отличающаяся тем, что радиальное оребрение нанесено на металлическую накладку.
МОДУЛЬ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ С ГИПЕРТЕПЛОПРОВОДЯЩИМ ОСНОВАНИЕМ | 2009 |
|
RU2403692C1 |
Осветительное устройство | 1989 |
|
SU1737425A1 |
Осветительное устройство | 1984 |
|
SU1560892A1 |
ТЕРМОСИФОН | 2008 |
|
RU2373473C1 |
US 4975803 A, 04.12.1990 | |||
Станок для изготовления деревянных ниточных катушек из цилиндрических, снабженных осевым отверстием, заготовок | 1923 |
|
SU2008A1 |
Авторы
Даты
2015-04-10—Публикация
2013-09-05—Подача