Изобретение относится к области авиации, в частности к конструкции лопастей несущего и рулевого винтов винтокрылых летательных аппаратов и других несущих поверхностей.
Аэродинамические характеристики профилей существенно зависят от их относительной толщины С/В, поэтому, как правило, относительная толщина, например лопасти, меняется по ее размаху в соответствии с аэродинамическими и конструктивными требованиями от значений С/В=15÷20% в комлевой части лопасти (r/R<0,4÷0,5) до 10÷15% в средней ее части (0,4÷0,5<r/R<0,9) и до 6÷10% в концевой части (r/R>0,9).
Здесь и далее в тексте используются обозначения: В - хорда профиля, С - его толщина, R - радиус несущего винта, r - текущее значение радиуса до рассматриваемого сечения лопасти винта.
Профили средней части занимают основную часть ее размаха и во многом их аэродинамические характеристики определяют аэродинамические характеристики несущего винта на всех режимах полета.
Для перспективных вертолетов наиболее важными представляются следующие аэродинамические характеристики профилей средних сечений лопастей их винтов:
а) величина коэффициента максимальной подъемной силы профиля Cуmax при характерных значениях чисел Маха М=0,3÷0,5;
б) величина критического числа Маха Мкр, при котором начинается быстрый рост коэффициента сопротивления профиля Схр;
в) значения максимального аэродинамического качества Kmax=max(Су/Схр) в диапазоне чисел М=0,5÷0,7;
г) величина коэффициента момента профиля при нулевой подъемной силе Сmo в эксплуатационном диапазоне чисел М. Далее при ссылке на эту величину понимается дозвуковой диапазон, где Сmo меняется незначительно.
Аэродинамические характеристики профилей в соответствии с пунктами (а-г) оказывают существенное влияние на максимальную несущую способность винта, потребляемую им мощность на различных режимах полета (включая режим висения), уровень нагрузок в системе управления и устойчивость движения лопастей при работе несущего винта.
Известны перспективные профили для винта вертолета (Advanced airfoils for helicopter rotor application (UK Patent Aplication GB 2059373 А от 20.09.1980 г.), в частности профиль для основных сечений лопастей, имеющий хорду длиной В, и отнесенные к длине хорды профиля ординаты точек верхней части контура Yв/B и нижней части контура Yн/b, расположенные на относительных расстояниях Х/В, измеренных вдоль его хорды, приведенные в таблице.
Этот аэродинамический профиль обладает высокими аэродинамическими характеристиками (а) и (б). Однако величина Kmax может быть недостаточной для многих категорий вертолетов.
Известна лопасть винта (Патент RU №2123453 от 15.12.96 г., МПК B64C 11/16, МПК B64C 11/18) с поперечным сечением в виде аэродинамического профиля, имеющего хорду длиной В, скругленную переднюю кромку, заостренную или затупленную заднюю кромку, расположенные на концах хорды профиля и соединенные между собой гладкими линиями верхней и нижней частей контура профиля, причем передняя кромка профиля лопасти имеет радиус скругления (радиус кривизны в носке профиля) верхней части контура, находящийся в диапазоне 0,017В÷0,023В, а радиус скругления (радиус кривизны в носке профиля) нижней части, находящийся в диапазоне 0,006B÷0,0085B, максимальная относительная толщина профиля С находится в диапазоне С=0,105В÷0,109В и расположена на расстоянии Х=0,33В÷0,38В, измеренном от передней кромки профиля вдоль его хорды, а отнесенные к длине хорды профиля ординаты точек верхней части контура Yв/B и нижней части контура Yн/b, расположенные на относительных расстояниях Х/В, измеренных вдоль его хорды, находятся в диапазонах, приведенных в таблице.
Этот аэродинамический профиль обладает совокупностью высоких аэродинамических характеристик (а)-(г). Недостатком является малый, с точки зрения технологии изготовления некоторых лопастей радиус кривизны нижней поверхности вблизи передней кромки, также в патенте не приведен вариант профиля, имеющего отрицательный коэффициент аэродинамического момента профиля при нулевой подъемной силе Сmo≈-0,015÷0, предпочтительный для определенных конструкций вертолетов.
Задача данного изобретения состоит в разработке контура аэродинамического профиля с увеличенной несущей способностью (а), не уступающему профилю прототипу по величинам критического числа Маха и максимального аэродинамического качества (б)-(в), имеющего малые положительные величины коэффициента аэродинамического момента (г), и контура аэродинамического профиля, имеющего малые отрицательные величины коэффициента аэродинамического момента.
Технический результат данного изобретения состоит в увеличении коэффициента максимальной подъемной силы лопасти, расширении диапазона радиусов кривизны нижней поверхности вблизи передней кромки профиля без потери несущей способности профиля и обеспечении малого отрицательного или положительного коэффициента аэродинамического момента профиля лопасти при нулевой подъемной силе.
Технический результат достигается тем, что аэродинамический профиль поперечного сечения несущей поверхности, содержащий хорду длиной В, скругленную переднюю кромку, заостренную или затупленную заднюю кромку, расположенные на концах хорды профиля и соединенные между собой гладкими линиями верхней и нижней частей контура профиля, имеет радиус скругления верхней части контура передней кромки профиля, находящийся в диапазоне 0,009В÷0,017В, и радиус скругления нижней части контура, находящийся в диапазоне 0,006В÷0,0015В, максимальная относительная толщина профиля находится в диапазоне 0,105В÷0,112В и расположена на расстоянии Х=0,28В÷0,4В, измеренном от передней кромки профиля вдоль его хорды, при этом расстояние Yв, отсчитанное от хорды профиля по нормали к ней вверх до верхней части контура, возрастает от передней кромки профиля до своего максимального значения Yвmax=0,0785B÷0,0791B, расположенного в диапазоне Х=0,25В÷0,4В, и далее это расстояние монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура верхней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к верхней части контура и хордой профиля у его задней кромки при Х=В составляет -7°÷-1,5°, при этом расстояние Yн, отсчитанное от хорды профиля по нормали к ней вниз до нижней части контура, монотонно и плавно возрастает от передней кромки до своего максимального значения Yвmax=0,0344В÷0,0377В при Х=0,5В÷0,7В и далее монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура нижней поверхности профиля при Х>0,7 В состыкована с его вогнутой хвостовой частью, а угол между касательной к нижней части контура и хордой профиля у задней кромки составляет 5°÷10°, при этом отнесенные к длине хорды профиля ординаты точек верхней части контура ув/В и нижней части контура ун/В, расположенные (по оси абсцисс) с относительными координатами х/В, измеренными от передней кромки профиля вдоль его хорды, находятся в диапазонах, приведенных в следующей таблице:
Технический результат достигается также тем, что аэродинамический профиль поперечного сечения несущей поверхности, содержащий хорду длиной В, скругленную переднюю кромку, заостренную или затупленную заднюю кромку, расположенные на концах хорды профиля и соединенные между собой гладкими линиями верхней и нижней частей контура профиля, имеет радиус скругления верхней части контура, находящийся в диапазоне 0,009В÷0,017В и радиус скругления нижней части контура, находящийся в диапазоне 0,006В÷0,0015В, максимальная относительная толщина профиля находится в диапазоне 0,105В÷0,112В и расположена на расстоянии Х=0,28В÷0,4В, измеренном от передней кромки профиля вдоль его хорды, при этом расстояние Yв, отсчитанное от хорды профиля по нормали к ней вверх до верхней части контура, монотонно и плавно возрастает от передней кромки профиля до своего максимального значения Yвmax=0,0767B÷0,0805B, расположенного в диапазоне Х=0,25В÷0,4В, и далее это расстояние монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура верхней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к верхней части контура и хордой профиля у его задней кромки при Х=В составляет -7,5°÷-4°, при этом расстояние Yн, отсчитанное от хорды профиля по нормали к ней вниз до нижней части контура, монотонно и плавно возрастает от передней кромки до своего максимального значения Yвmax=0,0317В÷0,0352В при Х=0,5В÷0,7В и далее монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура нижней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к нижней части контура и хордой профиля у задней кромки составляет 0°÷5°, при этом отнесенные к длине хорды профиля ординаты точек верхней части контура ув/В и нижней части контура ун/В, расположенные (по оси абсцисс) на относительных расстояниях х/В, измеренных от передней кромки профиля вдоль его хорды, находятся в диапазонах, приведенных в следующей таблице:
Технический результат достигается тем, что аэродинамический профиль поперечного сечения несущей поверхности имеет отнесенные к хорде безразмерные ординаты верхней и нижней частей контура, умноженные на постоянные числовые множители Kв для верхней части контура и Kн для нижней части контура, и безразмерные радиусы скругления передней кромки верхней и нижней частей контура, умноженные на квадраты этих постоянных числовых множителей, причем численные значения указанных множителей находятся в диапазонах 0,8<Kв<1,2 и 0,7<Kн<1,3.
Технический результат достигается также тем, что к задней кромке несущей поверхности с поперечным сечением в виде аэродинамического профиля прикреплена пластина-триммер, имеющая в сечении форму прямоугольника или трапеции, в том числе криволинейной, длиной не более 15% хорды профиля лопасти малой по сравнению с профилем толщины, причем угол отклонения ее относительно хорды профиля составляет -5°÷5°.
Работу аэродинамического профиля поперечного сечения несущей поверхности рассмотрим на примере лопасти в системе несущего винта, которая заключается в создании потребной величины аэродинамической подъемной силы при минимальном лобовом сопротивлении и приемлемых моментных характеристиках на всех режимах обтекания в процессе полета вертолета. Условия обтекания аэродинамических профилей несущего винта (реализуемые сочетания значений чисел М и коэффициентов подъемной силы Су) меняются в широких пределах в зависимости от режима полета и относительного радиуса сечения лопасти. На режиме висения характерными для средних по размаху лопасти сечений (0,5<r/R<0,9) являются значения чисел М<0,65 и значения Су=0,5÷0,7; в крейсерском полете профили идущей вперед лопасти обтекаются потоком при значениях чисел М<0,8 и Су>0,1÷0,2; при азимутальных положениях лопасти, близких к плоскости, параллельной вектору скорости полета, значения чисел М и коэффициентов подъемной силы Су близки к значениям этих величин на режиме висения, а на отступающей лопасти характерными являются значения чисел М<0,5 и Cу<Cуmax.
Для обеспечения малых затрат мощности на преодоление профильного сопротивления лопастей на режимах висения необходимо обеспечение возможно более высокого уровня аэродинамического качества профилей. В крейсерском полете целесообразной является аэродинамическая компоновка лопастей, обеспечивающая числа М, не превышающие значения Мкр при рабочих значениях коэффициентов подъемной силы Су рассматриваемых сечений. Для выполнения полетов при нагружениях лопастей, близких к предельным (полеты на большой высоте, с большими перегрузками, на максимальных скоростях и т.д.), наиболее эффективными являются профили с высокими значениями Суmax при М=0,3÷0,5; в то же время для снижения нагрузок в системе управления винта целесообразно использование профилей, имеющих небольшие положительные или отрицательные значения коэффициента аэродинамического момента профиля при нулевой подъемной силе Сmo.
Перечисленные требования к аэродинамическим характеристикам профилей для лопастей вертолетных винтов в совокупности противоречивы, то есть при создании модификаций известных профилей улучшение какой-либо из основных характеристик, как правило, сопровождается ухудшением других его характеристик.
Предлагаемые аэродинамические профили соответствуют совокупности перечисленных требований при приемлемых характеристиках по условиям конструктивной реализуемости лопастей (относительной толщине профиля, плавности контура, формам передней и задней кромок).
Представленные далее фигуры иллюстрируют суть данного изобретения и его сравнительную эффективность.
Фиг.1 представляет вариант контура аэродинамического профиля лопасти, спроектированного в соответствии с данным изобретением в сравнении с контуром профиля-прототипа.
Фиг.2 иллюстрирует основные элементы аэродинамического профиля лопасти, спроектированного в соответствии с данным изобретением.
Фиг.3 представляет распределение по хорде профиля кривизны верхнего и нижнего контура профиля лопасти, спроектированного в соответствии с данным изобретением.
Фиг.4 представляет зависимость Суmax (М) аэродинамического профиля, спроектированного в соответствии с данным изобретением, в сравнении с прототипом.
Фиг.5 представляет максимальное аэродинамическое качество Kmax(М) профиля, спроектированного в соответствии с данным изобретением в сравнении с прототипом.
Фиг.6 представляет зависимость Су(Мкр) профиля, спроектированного в соответствии с данным изобретением в сравнении с прототипом.
Фиг.7 представляет моментную характеристику Сmo(М) при Су=0 двух вариантов аэродинамических профилей, спроектированных в соответствии с данным изобретением в сравнении с прототипом.
Фиг.8 представляет участок лопасти с пластиной-триммером.
Контур аэродинамического профиля лопасти 1, спроектированного в соответствии с данным изобретением, имеющего максимальную относительную толщину в диапазоне 0,105В÷0,112В, приведен на фиг.1: в сравнении с контуром профиля-прототипа 2 (патент №2123453), для большей наглядности масштаб рисунка по оси у/В увеличен).
Предлагаемый аэродинамический профиль (фиг.2) имеет скругленную переднюю кромку 5, заостренную или затупленную заднюю кромку 6, соединенные между собой гладкими линиями верхней 3 и нижней 4 частей контура. Далее приведены варианты профиля, имеющие Сmo>0 и Cmo<0.
Для построения контура профиля (фиг.2) используется система координат с началом, расположенным на передней кромке профиля, осью х/В, направленной вдоль хорды 7 профиля и осью у/В, направленной перпендикулярно оси х/В. Далее в скобках указаны диапазоны для Cmo<0.
Верхняя часть контура имеет переднюю кромку с радиусом скругления Rв, равным 0,009В÷0,017В, участок задней кромки и две протяженные зоны между ними. В передней зоне 8 расстояние Yв, отсчитанное от хорды профиля по нормали к ней вверх до верхней части контура, монотонно и плавно возрастает от передней кромки профиля до своего максимального значения Yвmax=0,0785B÷0,0791B (0,0767В÷0,0805В), расположенного в диапазоне Х=0,25В÷0,4В (0,28В÷0,4В).
К зоне 8 примыкает хвостовая зона 9, внутри которой расстояние Yв монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура верхней поверхности профиля при Х>0,7 В состыкована с его вогнутой хвостовой частью, а угол между касательной к верхней части контура и хордой профиля у его задней кромки при Х=В составляет -7°÷-1,5° (-7,5°÷-4°).
Нижняя часть контура имеет переднюю кромку с радиусом скругления Rн, равным 0,006В÷0,0015В, участок задней кромки и две протяженные зоны между ними. В передней зоне 10 расстояние Yн, отсчитанное от хорды профиля по нормали к ней вниз до нижней части контура, монотонно и плавно возрастает от передней кромки до своего максимального значения Yвmax=0,0344В÷0,0377В (0,0317В÷0,0352В) при Х=0,5В÷0,7В.
К зоне 10 примыкает хвостовая зона 11, внутри которой Yн монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура нижней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к нижней части контура и хордой профиля у задней кромки составляет 5°÷10° (0°÷5°).
Для дополнительной корректировки величины коэффициента момента при нулевой подъемной силе Сmо используют пластину-триммер 12 (фиг.8), крепящуюся к задней кромке лопасти и имеющую в сечении вид дополнительного элемента 13 профиля (фиг.2), например, в виде прямоугольника или трапеции, в том числе криволинейной. Дополнительный элемент 13 имеет сравнительно малую относительную толщину по сравнению с профилем и выступает за пределы хорды профиля на расстояние, не превышающее 0,15В, при этом угол его отклонения относительно хорды профиля составляет -5°÷5°. Изменение длины такого элемента и его отклонение от хорды обеспечивает изменение моментных характеристик профиля. Как известно из результатов испытаний профилей с такими элементами, для обеспечения высоких аэродинамических характеристик профиля угол отклонения хвостовой части относительно его хорды составляет -5°÷5°.
Форма контуров профилей по данному изобретению (фиг.2) в верхних зонах 8, 9 и, отчасти, в нижней зоне 10 обеспечивает их высокую несущую способность за счет меньших (по сравнению с прототипом) величин разрежения потока в этих зонах при максимальной подъемной силе, а форма хвостовой части верхнего контура 9 обеспечивает при этом плавное безотрывное торможение потока на большей части контура.
Форма контура в верхних зонах 8 и 10 обеспечивает сравнительно малое разрежение потока, плавное его торможение и соответственно - малое сопротивление профиля при средних рабочих значениях Су и М.
Форма контура в верхней зоне 9 и нижней зоне 11 в совокупности с рационально выбранной пластиной-триммером 12 (фиг.8) обеспечивает благоприятные характеристики продольного момента предлагаемых профилей - малую положительную или отрицательную величину Сmо в рабочем диапазоне чисел М.
Гладкость профилей по данному изобретению обеспечивается непрерывным и плавным изменением кривизны его контура вдоль хорды профиля. Распределение кривизны k одного из вариантов контура профиля вдоль его хорды представлено на фиг.3 для верхней части контура (кривая 14) и для нижней части контура (кривая 15).
Так как при производстве несущих элементов летательных аппаратов выдерживание теоретических координат контура профиля возможно только с некоторой ограниченной точностью, определяемой суммарными техническими погрешностями всех этапов изготовления, реальные координаты точек контура профиля могут несколько отличаться от теоретических. С учетом этого обстоятельства координаты контура профиля, соответствующего данному изобретению, имеющего Сmo>0, должны находиться в интервале значений, задаваемых таблицей 1, а координаты контура профиля имеющего Сmo<0 - таблицей 2.
На практике часто возникают дополнительные конструктивные и аэродинамические требования, которые сводятся к сравнительно малым изменениям относительной толщины профиля и выражаются в том, что отнесенные к его хорде безразмерные ординаты контуров верхней ув/В и нижней ун/В поверхностей отличаются от соответствующих безразмерных ординат базового профиля исходной относительной толщины на постоянные числовые множители.
Переход к другой относительной толщине для профиля по данному изобретению возможен с помощью умножения ординат его контура на постоянные числовые множители Kв для верхней и Kн для нижней частей контура, которые могут различаться между собой. При этом радиусы скругления передней кромки верхней и нижней частей контура изменяются пропорционально квадратам этих коэффициентов.
Для обеспечения высоких аэродинамических характеристик профилей, полученных из базового профиля с помощью умножения его ординат на постоянные множители, их значения должны находиться в диапазонах 0,8<Kв<1,2 и 0,7<Kн<1,3.
Высокая аэродинамическая эффективность профилей по данному изобретению обусловлена гладкостью их контуров и рациональным сочетанием основных геометрических параметров (указанными величинами расстояний точек контура профиля от его хорды и плавным изменением кривизны контура). Форма контуров профилей по данному изобретению определена таким образом, что в передней и средней зонах верхней части контура профиля обеспечивается меньший (по сравнению с прототипом) уровень величин разрежения потока при максимальной подъемной силе профиля в диапазоне чисел М=0,3÷0,5. Форма хвостовой зоны верхней части контуров профилей обеспечивает при этом плавное безотрывное торможение потока на большей части хвостовой зоны. При средних значениях Су (по эксплуатационному диапазону для современных вертолетов) и чисел М на верхней части контуров профилей обеспечиваются сравнительно низкие уровни разрежения потока в их передней и хвостовой зонах, плавное его торможение в хвостовой зоне и, соответственно, малое сопротивление профилей.
Форма контуров профилей в хвостовых зонах при рационально выбранных параметрах присоединенного к задней кромке дополнительного элемента обеспечивает благоприятные характеристики продольного момента - небольшую положительную или отрицательную величину Сmo.
Основные аэродинамические характеристики профилей, разработанных на основе данного изобретения и профиля-прототипа, иллюстрируют графики фиг.4-7, построенные по результатам испытаний в скоростной аэродинамической трубе двух вариантов профиля по данному изобретению (с относительной толщиной С/В=0,107 и дополнительным элементом, составляющим 5% его хорды).
На фиг.4 представлены графики зависимостей коэффициентов максимальной подъемной силы Суmax сравниваемых профилей от значений чисел М в рабочем диапазоне М=0,35÷0,55, иллюстрирующие заметное (порядка 7%) превосходство предлагаемого профиля по сравнению с профилем-прототипом (кривая 16 - предлагаемый профиль, кривая 17 профиль-прототип).
На фиг.5 представлены графики зависимостей максимального аэродинамического качества Kmax от числа М для профиля, соответствующего данному изобретению (кривая 18), и профиля-прототипа (кривая 19). В наиболее важном для режима висения диапазоне М=0,55÷0,65 профиль по данному изобретению практически не уступает прототипу по уровню величины Kmax.
По величине Мкр, фиг.6, во всем диапазоне 0<Су<Суmax, практически важном для средних сечений лопастей винтов вертолетов, профиль по данному изобретению (кривая 21) также не уступает профилю-прототипу (кривая 20).
На фиг.7 представлены графики зависимостей величины коэффициента продольного момента Сmo от числа М. Кривая 22 - предлагаемый вариант профиля с кабрирующим моментом Сmo≥0, кривая 23 - предлагаемый вариант профиля с пикирующим моментом Сmo<0, кривая 24 - профиль-прототип.
Таким образом, аэродинамические профили лопасти винта, спроектированные в соответствии с сущностью данного изобретения, имеют, по сравнению с профилем-прототипом, преимущества:
в величине коэффициента максимальной подъемной силы, не уступая профилю-прототипу по величинам критического числа Маха и максимального аэродинамического качества,
в расширении диапазона радиусов кривизны нижней поверхности вблизи передней кромки профиля,
в обеспечении вариантов профиля как с отрицательным, так и с положительным коэффициентом аэродинамического момента профиля лопасти при нулевой подъемной силе.
Данные аэродинамические профили могут применяться также на других несущих поверхностях, например стабилизаторах летательных аппаратов.
название | год | авторы | номер документа |
---|---|---|---|
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ ПОПЕРЕЧНОГО СЕЧЕНИЯ НЕСУЩЕЙ ПОВЕРХНОСТИ | 2014 |
|
RU2559181C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ ПОПЕРЕЧНОГО СЕЧЕНИЯ НЕСУЩЕЙ ПОВЕРХНОСТИ | 2014 |
|
RU2558539C1 |
ЛОПАСТЬ ВИНТА | 1996 |
|
RU2123453C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 2022 |
|
RU2789094C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 1996 |
|
RU2098321C1 |
Аэродинамический профиль несущего элемента летательного аппарата | 2020 |
|
RU2752502C1 |
ЛОПАСТЬ ВИНТА И АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ ЛОПАСТИ (ВАРИАНТЫ) | 1996 |
|
RU2145293C1 |
ЛОПАСТЬ НЕСУЩЕГО ВИНТА ВЕРТОЛЕТА | 2006 |
|
RU2314230C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 2023 |
|
RU2808865C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 2023 |
|
RU2808523C1 |
Группа изобретений относится к области авиации. Аэродинамический профиль поперечного сечения несущей поверхности имеет хорду длиной B. Передняя кромка профиля скруглена, задняя кромка заострена или затуплена. Кромки расположены на концах хорды профиля и соединены между собой гладкими линиями верхней и нижней частей контура профиля. Передняя кромка профиля лопасти имеет радиусы скругления верхней части контура Rв в диапазоне 0,009В÷0,017В, а нижней части контура Rн - в диапазоне 0,006B÷0,015В. Максимальная относительная толщина профиля С находится в диапазоне 0,105В÷0,112B и расположена на расстоянии Х=0,25В÷0,4В от передней кромки профиля вдоль его хорды. Варианты изобретений имеют различную форму выполнения у задней кромки. Группа изобретений направлена на увеличение несущей способности. 2 н. и 4 з.п. ф-лы, 8 ил., 2 табл.
1. Аэродинамический профиль поперечного сечения несущей поверхности, имеющего хорду длиной В, скругленную переднюю кромку, заостренную или затупленную заднюю кромку, расположенные на концах хорды профиля и соединенные между собой гладкими линиями верхней и нижней частей контура профиля, отличающийся тем, что передняя кромка профиля несущей поверхности имеет радиус скругления верхней части контура Rв, находящийся в диапазоне 0,009В÷0,017В, и радиус скругления нижней части контура Rн, находящийся в диапазоне 0,006В÷0,0015В, максимальная относительная толщина профиля С находится в диапазоне 0,105В÷0,112В и расположена на расстоянии Х=0,28В÷0,4В, измеренном от передней кромки профиля вдоль его хорды, при этом расстояние Yв, отсчитанное от хорды профиля по нормали к ней вверх до верхней части контура, возрастает от передней кромки профиля до своего максимального значения Yвmax=0,0785B÷0,0791B, расположенного в диапазоне Х=0,25В÷0,4В, и далее это расстояние монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура верхней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к верхней части контура и хордой профиля у его задней кромки при Х=В составляет -7°÷-1,5°, при этом расстояние Yн, отсчитанное от хорды профиля по нормали к ней вниз до нижней части контура, монотонно и плавно возрастает от передней кромки до своего максимального значения Yвmax=0,0344В÷0,0377В при Х=0,5В÷0,7В и далее монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура нижней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к нижней части контура и хордой профиля у задней кромки составляет 5°÷10°, при этом отнесенные к длине хорды профиля ординаты точек верхней части контура ув/В и нижней части контура ун/В, расположенные по оси абсцисс с относительными координатами х/В, измеренными от передней кромки профиля вдоль его хорды, находятся в диапазонах, приведенных в следующей таблице:
2. Аэродинамический профиль поперечного сечения несущей поверхности по п.1, отличающийся тем, что аэродинамический профиль ее поперечного сечения имеет отнесенные к хорде безразмерные ординаты верхней и нижней частей контура, умноженные на постоянные числовые множители Kв для верхней части контура и Kн для нижней части контура, и безразмерные радиусы скругления передней кромки верхней и нижней частей контура, умноженные на квадраты этих постоянных числовых множителей, причем численные значения указанных множителей находятся в диапазонах 0,8<Kв<1,2 и 0,7<Kн<1,3.
3. Аэродинамический профиль поперечного сечения несущей поверхности по п.1 или 2, отличающийся тем, что к задней кромке лопасти прикреплена пластина-триммер, имеющая в сечения форму прямоугольника или трапеции, в том числе криволинейной, длиной не более 15% хорды профиля лопасти малой по сравнению с профилем толщины, причем угол отклонения ее относительно хорды профиля составляет -5°÷5°.
4. Аэродинамический профиль поперечного сечения несущей поверхности, имеющего хорду длиной В, скругленную переднюю кромку, заостренную или затупленную заднюю кромку, расположенные на концах хорды профиля и соединенные между собой гладкими линиями верхней и нижней частей контура профиля, отличающийся тем, что передняя кромка профиля несущей поверхности имеет радиус скругления верхней части контура Rв, находящийся в диапазоне 0,009В÷0,017В, и радиус скругления нижней части контура Rн, находящийся в диапазоне 0,006В÷0,0015В, максимальная относительная толщина профиля С находится в диапазоне 0,105В÷0,112В и расположена на расстоянии Х=0,28В÷0,4В, измеренном от передней кромки профиля вдоль его хорды, при этом расстояние Yв, отсчитанное от хорды профиля по нормали к ней вверх до верхней части контура, монотонно и плавно возрастает от передней кромки профиля до своего максимального значения Yвmax=0,0767В÷0,0805В, расположенного в диапазоне Х=0,25В÷0,4В, и далее это расстояние монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура верхней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к верхней части контура и хордой профиля у его задней кромки при Х=В составляет -7,5°÷-4°, при этом расстояние Yн, отсчитанное от хорды профиля по нормали к ней вниз до нижней части контура, монотонно и плавно возрастает от передней кромки до своего максимального значения Yвmax=0,0317В÷0,0352В при Х=0,5В÷0,7В и далее монотонно и плавно убывает к задней кромке профиля таким образом, что выпуклая передняя часть контура нижней поверхности профиля при Х>0,7В состыкована с его вогнутой хвостовой частью, а угол между касательной к нижней части контура и хордой профиля у задней кромки составляет 0°÷5°, при этом отнесенные к длине хорды профиля ординаты точек верхней части контура ув/В и нижней части контура ун/В, расположенные по оси абсцисс с относительными координатами х/В, измеренными от передней кромки профиля вдоль его хорды, находятся в диапазонах, приведенных в следующей таблице:
5. Аэродинамический профиль поперечного сечения несущей поверхности по п.4, отличающийся тем, что аэродинамический профиль ее поперечного сечения имеет отнесенные к хорде безразмерные ординаты верхней и нижней частей контура, умноженные на постоянные числовые множители Kв для верхней части контура и Kн для нижней части контура, и безразмерные радиусы скругления передней кромки верхней и нижней частей контура, умноженные на квадраты этих постоянных числовых множителей, причем численные значения указанных множителей находятся в диапазонах 0,8<Kв<1,2 и 0,7<Kн<1,3.
6. Аэродинамический профиль поперечного сечения несущей поверхности по п.4 или 5, отличающийся тем, что к задней кромке лопасти прикреплена пластина-триммер, имеющая в сечения форму прямоугольника или трапеции, в том числе криволинейной, длиной не более 15% хорды профиля лопасти малой по сравнению с профилем толщины, причем угол отклонения ее относительно хорды профиля составляет -5°÷5°.
ЛОПАСТЬ ВИНТА | 1996 |
|
RU2123453C1 |
АЭРОДИНАМИЧЕСКИЙ ПРОФИЛЬ НЕСУЩЕГО ЭЛЕМЕНТА ЛЕТАТЕЛЬНОГО АППАРАТА | 1996 |
|
RU2098321C1 |
Индикатор для измерения высоких частот | 1935 |
|
SU48649A1 |
Авторы
Даты
2015-04-10—Публикация
2014-02-24—Подача