СПОСОБ И УСТРОЙСТВО ДЛЯ ОБЕСПЕЧЕНИЯ РАСТЕНИЙ И/ИЛИ ВОДОРОСЛЕЙ ТЕПЛОМ И УГЛЕКИСЛЫМ ГАЗОМ С ИСПОЛЬЗОВАНИЕМ УХОДЯЩИХ ГАЗОВ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ Российский патент 2015 года по МПК A01G9/24 

Описание патента на изобретение RU2548951C1

Область техники

Настоящее изобретение относится к переработке и утилизации уходящих газов энергетической установки на биомассе, а именно к способу и устройству для обеспечения растений и/или водорослей тепловой энергией и углекислым газом с использованием уходящих газов энергетической установки.

Предшествующий уровень техники

Со снижением в мире запасов угля и нефти, различные страны мира все больше инвестируют развитие биоэнергетической промышленности, и энергетические установки, работающие на биомассе, находят все большее применение. Уходящий газ, полученный при горении биомассы, содержит большое количество водяного пара, 12-20% углекислого газа и небольшое количество угарного газа, сернистого газа, оксидов азота и пыли. При этом температура уходящих газов находится в пределах от 110 до 140°C, поэтому уходящий газ обладает большим количеством тепловой энергии. Результаты расчетов показывают, что при нормальной работе турбины мощностью 30 МВт, работающей от котла на биомассе, уходящий газ, выходящий из котла за один час, имеет 662850 ккал (соответствует 7710 кВт) тепловой энергии; тем не менее, эта часть энергии, содержащаяся в уходящем газе, выбрасывается при выпуске уходящих газов. К тому же, большое количество углекислого газа, содержащегося в уходящем газе, непрерывно попадает в атмосферу, что вызывает парниковый эффект и глобальное потепление.

С другой стороны, хорошо известны характеристики континентального климата в Китае, заключающиеся в длительном зимнем сезоне с холодной погодой и небольшим количеством осадков. Статистика показывает, что температура зимой в Китае на 8-10°C ниже, чем в других регионах на этой широте, холодная погода зимой длится 3-4 месяца в районе реки Янцзы, 4-5 месяцев в Северном Китае и почти полгода северо-востоке и северо-западе Китая. Для обеспечения выращивания растений зимой, в этих регионах широко используются теплицы. Тем не менее, в системе обогрева большинства теплиц используется уголь в качестве топлива, сжигание которого имеет низкую тепловую эффективность и требует запасов большого количества угля. При сжигании угольного топлива имеются большие потери и загрязнение окружающей среды, а также случается отравление газом. К тому же, при недостаточной подаче тепла, растения в зимний период растут медленно, что сказывается на увеличении их стоимости.

Исследования показали, что теплицы в Китае в основном используются в регионах, имеющих высокую плотность населения и развитое сельское хозяйство, при этом биотопливные энергетические установки главным образом используют сжигание сельскохозяйственных и лесных отходов для выработки энергии. Таким образом, можно регионы, в которых распространено использование теплиц и биотопливных электростанций, являются практически теми же самыми. Обычный способ решения проблемы выращивания растений и подачи тепла зимой включает подачу уходящих газов биотопливной энергетической установки непосредственно в теплицу для обеспечения роста растений с помощью уходящего тепла и углекислого газа. Однако уходящий газ содержит небольшое количество ядовитого угарного газа, что является проблемой, решение которой ищут исследователи.

Раскрытие изобретения

В виду существования вышеуказанных проблем, одной из технических задач настоящего изобретения является обеспечение способа и устройства для обеспечения растений и/или водорослей тепловой энергией и углекислым газом с использованием уходящего газа энергетической установки. Способ и устройство по настоящему изобретению направлены на полную утилизацию уходящих газов энергетической установки, работающей на угле или биомассе, для снижения потерь энергии и загрязнения окружающей среды, происходящими при прямом выбросе уходящих газов, и обеспечения тепловой энергии и углекислого газа с необходимой температурой и концентрацией для роста растений и/или водорослей с сокращением цикла роста, увеличением количества урожая на квадратный метр, снижением стоимости, увеличением доходов компании или фермера, а также с решение проблемы постоянной поставки урожая потребителям.

Для достижения вышеуказанной цели, по одному из вариантов осуществления настоящего изобретения предлагается способ обеспечения растений и/или водорослей тепловой энергией и углекислым газом с использованием уходящих газов энергетической установки, включающий следующие этапы:

1) подача уходящего газа энергетической установки в первичный теплообменник через магистраль подвода уходящего газа для проведения первого косвенного теплообмена между уходящим газом и воздухом из системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей для обеспечения теплом теплицы с растениями и/или установки культивирования водорослей;

2) подача части уходящих газов, прошедшей первый косвенный теплообмен в первичном теплообменнике, во вторичный теплообменник через переходный трубопровод уходящего газа для проведения вторичного косвенного теплообмена между уходящим газом и атмосферным воздухом с дополнительным снижением температуры уходящих газов и улучшением условий адсорбции углекислого газа;

3) подача уходящего газа, прошедшего второй косвенный теплообмен во вторичном теплообменнике, в устройство адсорбции CO2 при переменном давлении, отделение углекислого газа от уходящего газа, и перекачивание углекислого газа в резервуар хранения углекислого газа; и

4) подача углекислого газа из резервуара хранения углекислого газа в теплицу с растениями и/или бак для поглощения углерода установки культивирования водорослей в период роста растений и/или водорослей.

В качестве усовершенствования изобретения, на этапе 2) атмосферный воздух нагревают с помощью уходящего газа и подают в третичный теплообменник для теплообмена с циркулирующей водой системы подачи теплой воды бака для поглощения углерода для подогрева воды в баке для поглощения углерода. Тем самым, теплота уходящих газов полностью утилизируется для получения температуры воды, необходимой для роста водорослей.

В качестве усовершенствования изобретения, на этапе 1) температуру уходящих газов энергетической установки поддерживают в пределах 110-140°C, температуру уходящих газов, прошедших первый косвенный теплообмен в первичном теплообменнике поддерживают в пределах 80-90°C, а температуру подогретого воздуха, служащего для подачи в теплицу с растениями и/или в установку культивирования водорослей, поддерживают в пределах 40-50°C.

В качестве усовершенствования изобретения, на этапе 2) температуру уходящих газов, прошедших второй косвенный теплообмен во вторичном теплообменнике, поддерживают в пределах 50-60°C, температуру атмосферного воздуха, нагретого уходящими газами, поддерживают в пределах 40-50°C, а температуру внутри бака для поглощения углерода поддерживают в пределах 25-35°C.

В качестве усовершенствования изобретения, на этапе 4) углекислый газ подают один раз в день в период светового дня, концентрацию углекислого газа в теплице с растениями регулируют в диапазоне значений 600-1200 мг/м³, при этом теплицу с растениями изолируют на 1,5-2,0 часа для подачи углекислого газа, после чего задействуют вентиляцию для проветривания теплицы с растениями и удаления влаги. Таким образом, обеспечивается концентрация углекислого газа, необходимая для улучшения роста растений, вследствие чего значительно повышается урожайность на единицу площади.

Предлагаемое устройство для обеспечения растений и/или водорослей тепловой энергией и углекислым газом, включающее: вытяжной вентилятор, магистраль подвода уходящего газа, соединенную с вытяжным вентилятором, первичный теплообменник, магистраль отвода уходящего газа, соединенную с дымоходом, вторичный теплообменник, устройство адсорбции CO2 при переменном давлении и резервуар хранения углекислого газа.

Первичный теплообменник представляет собой кожухотрубный теплообменник, включающий трубопровод входа газа, трубопровод выхода газа, трубопровод входа воздуха и трубопровод выхода воздуха, при этом трубопровод входа газа соединен с магистралью подвода уходящего газа через первый нагнетатель, трубопровод выхода газа соединен с магистралью отвода уходящего газа, трубопровод входа воздуха соединен с трубопроводом циркуляции воздуха системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей через второй нагнетатель, трубопровод выхода воздуха соединен с трубопроводом выхода воздуха системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей.

Вторичный теплообменник представляет собой трубчатый теплообменник, включающий патрубок входа холодного воздуха, патрубок входа уходящего газа и патрубок выхода уходящего газа, при этом патрубок входа холодного воздуха сообщен с атмосферой через циркуляционный насос, патрубок входа уходящего газа соединен с магистралью отвода уходящего газа через компрессор, патрубок выхода уходящего газа соединен с входным патрубком устройства адсорбции CO2 при переменном давлении, выходной патрубок устройства адсорбции CO2 при переменном давлении соединен с резервуаром хранения углекислого газа через вакуумный насос, а резервуар хранения углекислого газа соединен с теплицей с растениями и/или баком для поглощения углерода установки культивирования водорослей через трубопровод подвода CO2 и расположенный на нем регулирующий клапан.

В качестве усовершенствования изобретения, устройство дополнительно включает третичный теплообменник, причем третичный теплообменник представляет собой газожидкостный теплообменник, содержащий вход воздуха, выход воздуха, патрубок выхода теплой воды и патрубок возврата теплой воды, при этом вход воздуха соединен с выходным патрубком нагретого воздуха трубчатого теплообменника через переходный трубопровод, выход воздуха сообщен с атмосферой через отводящий трубопровод, патрубок выхода теплой воды соединен с входом воды в бак для поглощения углерода через циркуляционный водяной насос, а патрубок возврата теплой воды соединен с выходом воды из бака для поглощения углерода через электромагнитный клапан.

Тепловую энергию, которой обладает уходящий газ, отбирают путем косвенного теплообмена между уходящим газом и воздухом, а углекислый газ, содержащийся в уходящем газе, получают с помощью устройства адсорбции CO2 при переменном давлении. Настоящее изобретение имеет следующие преимущества.

Во-первых, для обеспечения теплом теплицы с растениями и/или установки для культивирования водорослей используют косвенный теплообмен. При этом не только полностью утилизируется тепло уходящих газов, что снижает стоимость обслуживания системы подачи тепла, но также эффективно снижается расход угольного топлива, необходимого для обеспечения теплом, за счет чего обеспечивается энергосбережение. Косвенный теплообмен также применим и к энергетическим установкам, работающим на биомассе, которые располагаются в сельскохозяйственных областях.

Во-вторых, углекислый газ, полученный из уходящего газа, подают в теплицу с растениями и/или резервуар хранения углекислого газа установки для культивирования водорослей для того, чтобы предотвратить загрязнение растений и/или водорослей небольшим количеством ядовитых веществ, содержащихся в уходящих газах, а также при этом значительно улучшается рост растений и/или водорослей и решается проблема невысокого урожая в зимний период.

И наконец, когда уходящее тепло и углекислый газ, содержащиеся в уходящих газах, получают при сжигании растений и другой биомассы, потери энергии и загрязнение окружающей среды, вызываемые прямым выбросом уходящих газов, эффективно предотвращается, что также способствует снижению парникового эффекта. Кроме того, биомасса, полученная из теплицы с растениями и установки для культивирования водорослей, затем может быть использована в качестве топлива энергетической установки, тем самым обеспечивая наиболее эффективный цикл работы.

Краткое описание фигур чертежей

Настоящее изобретение будет описано далее со ссылкой на приложенные чертежи, на которых представлено:

фиг. 1 - структурная схема устройства для подачи тепловой энергии и углекислого газа растениям и/или водорослям;

фиг. 2 - структурная схема первичного теплообменника с фиг.1;

фиг. 3 - структурная схема третичного теплообменника с фиг.1;

фиг. 4 - структурная схема устройства для адсорбции CO2 при переменном давлении с фиг.1.

Подробное описание вариантов осуществления изобретения

Настоящее изобретение далее поясняется более подробно со ссылкой на приложенные чертежи.

Как показано на фиг.1-4, устройство для обеспечения растений и/или водорослей тепловой энергией и углекислым газом включает: во-первых, вытяжной вентилятор 3 и магистраль подвода уходящего газа 4, соединенную с вытяжным вентилятором 3 для вытягивания уходящих газов из котла энергетической установки, работающей на биомассе; во-вторых, магистраль отвода уходящего газа 1, соединенную с дымоходом 2, для выпуска уходящего газа, прошедшего теплообменную очистку; в-третьих, первичный теплообменник 5, вторичный теплообменник 12 и третичный теплообменник 8 для обеспечения косвенного теплообмена между уходящим газом и чистым воздухом или водой, для получения тепла и нагретой воды, необходимых для теплицы с растениями 6 и установки для культивирования водорослей 9; и, в-четвертых, устройство адсорбции CO2 при переменном давлении 14 и резервуар хранения углекислого газа 16. В устройстве адсорбции CO2 при переменном давлении 14, известном из уровня техники, в качестве абсорбента используется силикагель или активированный уголь. Углекислый газ получают за счет устройства адсорбции CO2 при переменном давлении 14 при изменении давления для последующей подачи его в теплицу с растениями 6 или бак для поглощения углерода 10 установки культивирования водорослей 9.

Первичный теплообменник 5 представляет собой кожухотрубный теплообменник 5.1, включающий трубопровод входа газа 5.3, трубопровод выхода газа 5.4, трубопровод входа воздуха 5.6 и трубопровод выхода воздуха 5.7. Трубопровод входа газа 5.3 соединен с магистралью подвода уходящего газа 4 через первый нагнетатель 5.2. Трубопровод выхода газа 5.4 соединен с магистралью отвода уходящего газа 1. Трубопровод входа воздуха 5.6 соединен с трубопроводом циркуляции воздуха системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей через второй нагнетатель 5.5. Трубопровод выхода воздуха 5.7 соединен с трубопроводом выхода воздуха системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей. Таким образом, воздух, находящийся в теплице с растениями и/или установке для культивирования водорослей, поглощает тепловую энергию от уходящих газов с помощью кожухотрубного теплообменника 5.1 для обеспечения растений или водорослей теплом.

Вторичный теплообменник 12 представляет собой трубчатый теплообменник, включающий патрубок входа холодного воздуха, патрубок входа уходящего газа и патрубок выхода уходящего газа. Патрубок входа холодного воздуха сообщен с атмосферой через циркуляционный насос 13. Патрубок входа уходящего газа соединен с магистралью отвода уходящего газа 1 через компрессор 11 для отбора части тепла из уходящих газов с температурой, необходимой для поглощения CO2. Патрубок выхода уходящего газа соединен с входным патрубком устройства адсорбции CO2 при переменном давлении 14. Выходной патрубок устройства адсорбции CO2 при переменном давлении 14 соединен с резервуаром хранения углекислого газа 16 через вакуумный насос 15. Резервуар хранения углекислого газа 16 соединен с теплицей с растениями и/или баком для поглощения углерода 10 установки культивирования водорослей через трубопровод подвода CO2 7 и расположенный на нем регулирующий клапан 19 для обеспечения растений или водорослей углекислым газом. Датчик концентрации CO2 6.1 установлен внутри теплицы с растениями для автоматического регулирования открытия или закрытия регулировочного клапана 19.

Третичный теплообменник 8 представляет собой газожидкостный теплообменник 8.1, содержащий вход воздуха, выход воздуха, патрубок выхода теплой воды и патрубок возврата теплой воды. Вход воздуха соединен с выходным патрубком нагретого воздуха трубчатого теплообменника через переходный трубопровод 17, а выход воздуха сообщен с атмосферой через отводящий трубопровод 18. Патрубок выхода теплой воды соединен с входом воды в бак для поглощения углерода 10 через циркуляционный водяной насос 8.2, а патрубок возврата теплой воды соединен с выходом воды из бака для поглощения углерода 10 через электромагнитный клапан 8.3. Таким образом, циркуляционный контур горячей воды выполнен для постоянного обеспечения водорослей теплой водой в баке для поглощения углерода 10. Бак для поглощения углерода 10 обеспечен датчиком температуры 8.4 и датчиком уровня воды 8.5 для автоматического открытия и закрытия электромагнитного клапана 8.3.

Рабочий процесс устройства для обеспечения растений и/или водорослей тепловой энергией и углекислым газом является следующим.

1) Уходящие газы с температурой 110-140°C из энергетической установки вытягиваются вытяжным вентилятором 3 в кожухотрубный теплообменник 5.1 через магистраль подвода уходящего газа 4 для обеспечения первого косвенного теплообмена с воздухом из системы подачи тепла в теплицу с растениями 6 и установку для культивирования водорослей 9. Воздух нагревается до температуры 40-50°C и поступает в теплицу с растениями 6 и установку для культивирования водорослей 9 для обеспечения растений и водорослей теплом. Система подачи тепла регулируется для обеспечения теплицы с растениями температурой 20-28°C днем и 14-18°C ночью, что обеспечивает быстрый рост растений.

2) Температура уходящих газов, прошедших теплообмен в кожухотрубном теплообменнике 5.1, составляет 80-90°C. Часть уходящих газов выходит из дымохода 2 через магистраль отвода уходящего газа 1. Другая часть уходящих газов поступает в трубчатый теплообменник 12 с помощью компрессора 11 через ответвление на магистрали отвода уходящего газа 1 для обеспечения второго теплообмена с атмосферным воздухом с использованием циркуляционного насоса 13. Атмосферный воздух нагревается до температуры 40-50°C.

3) Уходящие газы, после теплообмена в трубчатом теплообменнике 12, имеют температуру 50-60°C и поступают в устройство адсорбции CO2 при переменном давлении 14. В устройстве адсорбции CO2 при переменном давлении 14 используется силикагель или активированный уголь в качестве абсорбента. Углекислый газ получают при переменном давлении и направляют в бак хранения углекислого газа 16 с помощью вакуумного насоса 15.

4) Атмосферный воздух после нагрева с помощью трубчатого теплообменника 12 поступает через переходный трубопровод 17 в газожидкостный косвенный теплообменник 8.1 для теплообмена с циркулирующей водой системы подачи горячей воды бака для поглощения углерода 10. Температуру воды в баке для поглощения углерода 10 обеспечивают 25-35°C для обеспечения роста водорослей. Датчик температуры 8.4 и датчик уровня воды 8.5 служат для слежения за температурой и уровнем воды в баке для поглощения углерода 10. Когда температура воды достигает 35°C, а уровень воды достигает заданного, электромагнитный клапан 8.3, установленный на трубопроводе циркулирующей воды бака для поглощения углерода 10, закрывается, и газожидкостный косвенный теплообменник 8.1 перестает работать. Когда температура воды падает ниже 25°C, электромагнитный клапан 8.3 открывается, и газожидкостный косвенный теплообменник 8.1 снова начинает работать.

5) В процессе цикла роста растений и водорослей углекислый газ, находящийся в баке хранения CO2, поступает в теплицу 6 и бак для поглощения углерода 10 установки для культивирования водорослей 9 в зависимости от необходимости. Для теплицы с растениями 6, углекислый газ поступает один раз в светлое время каждый день. Датчик концентрации CO2 6.1 служит для определения концентрации CO2 в теплице с растениями 6 в режиме реального времени, при этом концентрацию CO2 регулируют в диапазоне 800-1000 мг/м³ с помощью автоматического открытия и закрытия регулировочного клапана 19. После закрытия теплицы с растениями на 1,5-2,0 ч, задействуется вентиляция для удаления влаги. Исследования показали, что при культивировании небольших посевов растений, таких как огурцы и сельдерей, за счет утилизации тепловой энергии и углекислого газа из уходящих газов энергетической установки, работающей на биомассе, урожайность на единицу площади выращивания огурцов и сельдерея увеличилась на 26,5% и 39,9% соответственно.

Похожие патенты RU2548951C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ УТИЛИЗАЦИИ ПРОДУКТОВ СГОРАНИЯ ЭНЕРГОУСТАНОВОК, ИСПОЛЬЗУЮЩИХ ПРИРОДНЫЙ ГАЗ 2015
  • Бородулин Игорь Васильевич
  • Милюткин Владимир Александрович
  • Антонова Зоя Павловна
  • Панкеев Сергей Алексеевич
RU2599436C1
СПОСОБ УТИЛИЗАЦИИ ПРОДУКТОВ СГОРАНИЯ ЭНЕРГОУСТАНОВОК, ИСПОЛЬЗУЮЩИХ ПРИРОДНЫЙ ГАЗ 2015
  • Бородулин Игорь Васильевич
  • Милюткин Владимир Александрович
  • Антонова Зоя Павловна
  • Панкеев Сергей Алексеевич
RU2608495C1
ПАРОГАЗОВАЯ ТУРБОУСТАНОВКА 2007
  • Бородин Александр Алексеевич
RU2359135C2
ПАРОГАЗОВАЯ ТУРБОУСТАНОВКА 2007
  • Бородин Александр Алексеевич
RU2362890C2
СПОСОБ ПОСТОЯННОЙ ДОЗАЦИИ УГЛЕКИСЛОГО ГАЗА В ТЕПЛИЦЫ В АВТОМАТИЧЕСКОМ РЕЖИМЕ 2013
  • Овчинников Александр Владимирович
  • Каравайков Владимир Михайлович
RU2549290C2
СПОСОБ АВТОНОМНОГО ТЕПЛОСНАБЖЕНИЯ И МОБИЛЬНАЯ МУЛЬТИКОТЕЛЬНАЯ ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2004
  • Ежов Владимир Сергеевич
  • Мамаева Диана Владимировна
  • Левит Владимир Александрович
RU2271500C2
СИСТЕМА ОХЛАЖДЕНИЯ ПИТАТЕЛЬНОГО РАСТВОРА В ГИДРОПОННЫХ ТЕХНОЛОГИЯХ ВЫРАЩИВАНИЯ СЕЛЬСКОХОЗЯЙСТВЕННЫХ КУЛЬТУР 2024
  • Мирмов Илья Наумович
  • Мирмов Наум Исакович
  • Щипцов Сергей Александрович
RU2827276C1
Установка для переработки нефтяных попутных газов и культивирования микроводорослей 1989
  • Коваленко Эдуард Константинович
  • Желтов Юрий Васильевич
  • Зуев Александр Михайлович
  • Горев Станислав Николаевич
SU1803423A1
УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ И ИСПОЛЬЗОВАНИЯ ЖИДКИХ ОТХОДОВ ЖИВОТНОГО ПРОИСХОЖДЕНИЯ, ВКЛЮЧАЯ МЕТАНИЗАЦИЮ, КУЛЬТИВИРОВАНИЕ МИКРОСКОПИЧЕСКИХ ВОДОРОСЛЕЙ И МАКРОФИТОВ И ВЕРМИКУЛЬТИВИРОВАНИЕ 2014
  • Гийяр Рене-Жан
RU2684594C2
СИСТЕМЫ И СПОСОБЫ ОБЕСПЕЧЕНИЯ УСТОЙЧИВОГО ЭКОНОМИЧЕСКОГО РАЗВИТИЯ ПУТЕМ ИНТЕГРИРОВАННОЙ ВЫРАБОТКИ ВОЗОБНОВЛЯЕМОЙ ЭНЕРГИИ ПОЛНОГО СПЕКТРА 2010
  • Макэлистэр Рой Е.
RU2562336C2

Иллюстрации к изобретению RU 2 548 951 C1

Реферат патента 2015 года СПОСОБ И УСТРОЙСТВО ДЛЯ ОБЕСПЕЧЕНИЯ РАСТЕНИЙ И/ИЛИ ВОДОРОСЛЕЙ ТЕПЛОМ И УГЛЕКИСЛЫМ ГАЗОМ С ИСПОЛЬЗОВАНИЕМ УХОДЯЩИХ ГАЗОВ ЭНЕРГЕТИЧЕСКОЙ УСТАНОВКИ

Изобретение относится к переработке и утилизации уходящих газов. Способ включает подачу уходящих газов в первичный теплообменник (5) для осуществления первого теплообмена с воздухом и подачу горячего воздуха в теплицу с растениями (6) и/или установку культивирования водорослей (9). Далее подают часть уходящих газов, охлажденных в первичном теплообменнике, во вторичный теплообменник (12) для проведения второго теплообмена с воздухом и охлаждения уходящих газов до температуры, необходимой для дополнительного отбора углекислого газа. Затем проводят получение углекислого газа из уходящих газов и подачу углекислого газа в теплицу с растениями и/или бак для поглощения углерода установки для культивирования водорослей. Устройство состоит из магистрали подвода уходящего газа (4), соединенной с вытяжным вентилятором (3), первичного теплообменника (5), магистрали отвода уходящего газа (1), соединенной с дымоходом, вторичного теплообменника (12), устройства адсорбции CO2 при переменном давлении (14) и резервуар хранения CO2 (16). Конструкция устройства снижает потери энергии и загрязнение окружающей среды, вызванные прямым выбросом, за счет значительной утилизации уходящих газов, повышает урожайность растений и/или водорослей в зимний период времени. 2 н. и 6 з.п. ф-лы, 4 ил.

Формула изобретения RU 2 548 951 C1

1. Способ обеспечения растений и/или водорослей тепловой энергией и углекислым газом с использованием уходящих газов энергетической установки, включающий следующие этапы:
1) подача уходящего газа энергетической установки в первичный теплообменник через магистраль подвода уходящего газа для проведения первого косвенного теплообмена между уходящим газом и воздухом из системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей для обеспечения теплом теплицы с растениями и/или установки культивирования водорослей;
2) подача части уходящих газов, прошедшей первый косвенный теплообмен в первичном теплообменнике, во вторичный теплообменник через переходный трубопровод уходящего газа для проведения вторичного косвенного теплообмена между уходящим газом и атмосферным воздухом с дополнительным снижением температуры уходящих газов и улучшением условий адсорбции углекислого газа;
3) подача уходящего газа, прошедшего второй косвенный теплообмен во вторичном теплообменнике, в устройство адсорбции CO2 при переменном давлении, отделение углекислого газа от уходящего газа и перекачивание углекислого газа в резервуар хранения углекислого газа; и
4) подача углекислого газа из резервуара хранения углекислого газа в теплицу с растениями и/или бак для поглощения углерода установки культивирования водорослей в период роста растений и/или водорослей.

2. Способ по п.1, отличающийся тем, что на этапе 2) атмосферный воздух нагревают с помощью уходящего газа и подают в третичный теплообменник для теплообмена с циркулирующей водой системы подачи теплой воды бака для поглощения углерода для подогрева воды в баке для поглощения углерода.

3. Способ по п.1 или 2, отличающийся тем, что на этапе 1) температуру уходящих газов энергетической установки поддерживают в пределах 110-140°C, температуру уходящих газов, прошедших первый косвенный теплообмен в первичном теплообменнике поддерживают в пределах 80-90°C, а температуру подогретого воздуха, служащего для подачи в теплицу с растениями и/или в установку культивирования водорослей, поддерживают в пределах 40-50°C.

4. Способ по п.2, отличающийся тем, что на этапе 2) температуру уходящих газов, прошедших второй косвенный теплообмен во вторичном теплообменнике, поддерживают в пределах 50-60°C, температуру атмосферного воздуха, нагретого уходящими газами, поддерживают в пределах 40-50°C, а температуру внутри бака для поглощения углерода поддерживают в пределах 25-35°C.

5. Способ по п.1 или 2, отличающийся тем, что на этапе 4) углекислый газ подают один раз в день в период светового дня, концентрацию углекислого газа в теплице с растениями регулируют в диапазоне значений 600-1200 мг/м³, при этом теплицу с растениями изолируют на 1,5-2,0 ч для подачи углекислого газа, после чего задействуют вентиляцию для проветривания теплицы с растениями и удаления влаги.

6. Устройство для обеспечения растений и/или водорослей тепловой энергией и углекислым газом по способу по п.1, включающее вытяжной вентилятор (3), магистраль подвода уходящего газа (4), соединенную с вытяжным вентилятором (3), первичный теплообменник (5), магистраль отвода уходящего газа (1), соединенную с дымоходом (2), вторичный теплообменник (12), устройство адсорбции CO2 при переменном давлении (14) и резервуар хранения углекислого газа (16),
характеризующееся тем, что:
первичный теплообменник (5) представляет собой кожухотрубный теплообменник (5.1), включающий трубопровод входа газа (5.3), трубопровод выхода газа (5.4), трубопровод входа воздуха (5.6) и трубопровод выхода воздуха (5.7), при этом трубопровод входа газа (5.3) соединен с магистралью подвода уходящего газа (4) через первый нагнетатель (5.2), трубопровод выхода газа (5.4) соединен с магистралью отвода уходящего газа (1), трубопровод входа воздуха (5.6) соединен с трубопроводом циркуляции воздуха системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей через второй нагнетатель (5.5), трубопровод выхода воздуха (5.7) соединен с трубопроводом выхода воздуха системы подачи тепла в теплицу с растениями и/или установку культивирования водорослей;
вторичный теплообменник (12) представляет собой трубчатый теплообменник, включающий патрубок входа холодного воздуха, патрубок входа уходящего газа и патрубок выхода уходящего газа, при этом патрубок входа холодного воздуха сообщен с атмосферой через циркуляционный насос (13), патрубок входа уходящего газа соединен с магистралью отвода уходящего газа (1) через компрессор (11), патрубок выхода уходящего газа соединен с входным патрубком устройства адсорбции CO2 при переменном давлении (14), выходной патрубок устройства адсорбции CO2 при переменном давлении (14) соединен с резервуаром хранения углекислого газа (16) через вакуумный насос (15), а резервуар хранения углекислого газа (16) соединен с теплицей с растениями и/или баком для поглощения углерода (10) установки культивирования водорослей через трубопровод подвода CO2 (7) и расположенный на нем регулирующий клапан (19).

7. Устройство по п.6, отличающееся тем, что дополнительно включает третичный теплообменник (8), причем третичный теплообменник (8) представляет собой газожидкостный теплообменник, содержащий вход воздуха, выход воздуха, патрубок выхода теплой воды и патрубок возврата теплой воды, при этом вход воздуха соединен с выходным патрубком нагретого воздуха трубчатого теплообменника через переходный трубопровод (17), выход воздуха сообщен с атмосферой через отводящий трубопровод (18), патрубок выхода теплой воды соединен с входом воды в бак для поглощения углерода (10) через циркуляционный водяной насос (8.2), а патрубок возврата теплой воды соединен с выходом воды из бака для поглощения углерода (10) через электромагнитный клапан (8.3).

8. Устройство по п.7, отличающееся тем, что бак для поглощения углерода (10) обеспечен датчиком температуры (8.4) и датчиком уровня воды (8.5).

Документы, цитированные в отчете о поиске Патент 2015 года RU2548951C1

CN 1280761 A , 24.01.2001
CN 2921031 Y, 11.07.2007
CN 101525551 A , 09.09.2009
RU 94030178 A1, 10.06.1996
WO 1995032611 A1, 07.12.1995

RU 2 548 951 C1

Авторы

Чен Йилонг

Ху Шучуан

Жанг Янфенг

Даты

2015-04-20Публикация

2012-03-31Подача