УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА Российский патент 2015 года по МПК G01N22/00 

Описание патента на изобретение RU2551372C1

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство может быть применено для определения технологических параметров бумажного, картонного и т.п. полотна в процессе его производства.

Известны различные устройства для определения физических свойств веществ, основанные на измерении их электрофизических параметров с применением радиочастотных датчиков, содержащих контролируемое вещество (монография: Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Наука, 1989. С.47-60). Известно, в частности, устройство для измерения толщины, влажности и других свойств листового диэлектрического материала на основе объемного СВЧ-резонатора (US 3458808, 29.07.1969). Здесь полость цилиндрического резонатора расщеплена на две идентичные части вдоль оси резонатора так, что контролируемый слой листового материала, например бумаги, может свободно перемещаться через нее.

Известно также техническое решение (US 4297874, 03.11.1981), которое содержит описание устройства, по технической сущности наиболее близкого к предлагаемому устройству и принятого в качестве прототипа. Это устройство-прототип содержит волноводный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости частей. В щели между ними параллельно этой плоскости размещен листовой диэлектрический материал. К резонатору подсоединены с помощью элементов связи генератор электромагнитных колебаний и вторичный преобразователь. Недостатком данного устройства является его невысокая точность при проведении измерений в реальных условиях, когда контролируемый лист имеет поперечный люфт, например, при его движении. При этом этот лист смещается относительно картины распределения электрического поля стоячей волны в резонаторе и, как следствие, изменяется значение информативного параметра - резонансной частоты электромагнитных колебаний.

Техническим результатом изобретения является повышение точности измерения при возможности поперечного смещения контролируемого листа в процессе измерения.

Технический результат достигается тем, что предлагаемое устройство для измерения физических параметров диэлектрического листового материала содержит волноводный прямоугольный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок. При этом в полости каждой из частей резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, у ее короткозамкнутого торца установлена диэлектрическая вставка с тем же поперечным размером, что и у резонатора, ее продольный размер имеет величину d = L / 2 n ε 1 , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Резонатор может быть снабжен запредельным волноводом, образованным совокупностью двух параллельных друг другу и листовому материалу металлических полос, каждая из которых подсоединена к свободному краю соответствующей половины расщепленной полости.

Предлагаемое устройство поясняется чертежами на фиг.1, фиг.2 и фиг.3.

На фиг.1 изображено поперечное сечение прямоугольного волновода с двумя диэлектрическими вставками и распределение в нем электрического поля.

На фиг.2 изображено поперечное сечение волноводного резонатора с контролируемым листовым материалом.

На фиг.3 приведена функциональная схема устройства.

На фигурах показаны прямоугольный волновод 1, диэлектрические вставки 2 и 3, резонатор 4, листовой материал 5, открытая поверхность 6, щель 7, металлическая полоса 8, элементы связи 9 и 10, генератор электромагнитных колебаний 11, электронный блок 12.

Устройство работает следующим образом.

Применение датчика на основе волноводного резонатора, образованного совокупностью двух частей его расщепленной полости, обеспечивает измерение параметров листовых материалов независимо от поперечного положения движущегося листа в пределах щели.

Для этой цели необходимо иметь однородное распределение энергии электромагнитного поля в поперечном сечении (щели), содержащей такой лист (фиг.1). Такое приблизительно однородное распределение обеспечивается в резонаторе на основе прямоугольного волновода 1 (на фиг.1 показано распределение амплитуды электрического поля Е). У противоположных широких сторон поперечного сечения прямоугольного волновода 1 вдоль его длины размещены диэлектрические вставки 2 и 3 с толщиной d и диэлектрической проницаемостью ε. В центральной свободной части поперечного сечения волновода с исходным типом волн H10 существует поле волны типа TEM (VanKoughnett A.L., Wyslouzil W. A waveguide ТЕМ mode exposure chamber // Journal of Microwave Power. 1972, vol.7, №4, pp.381-283). Эти волны являются поперечными (ТЕМ), если выполнено следующее условие:

где λ - длина волны в свободном пространстве на используемой рабочей частоте.

Волноводный прямоугольный резонатор, выполненный на основе такого волновода в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, может служить в качестве датчика для измерений некоторых технологических параметров, в частности физических параметров движущихся листовых материалов.

В этом случае имеет место почти равномерное распределение электромагнитной энергии в свободном пространстве волновода, а также в рассматриваемом резонаторе на его основе, которое можно считать таким же и в присутствии контролируемого листа в пределах щели. В качестве диэлектрических вставок могут применяться различные материалы: плексиглас (ε=2.59), корунд (ε=10.07) и др. Так, требуемый режим работы с электромагнитном полем TEM-типа в центральной части волновода обеспечивается на частоте 2450 МГц (λ=12,45 см) при следующих параметрах: размеры поперечного сечения 7×3,5 см2; ε=7; d=1,3 см. Можно считать, что такое же равномерное распределение поля в этой области имеет место и при малых изменениях частоты генератора или при введении диэлектрического листа в рассматриваемое свободное пространство, незначительно изменяя электрическое поле стоячей волны в резонаторе.

В данном резонаторе возбуждают колебания типа H10n, n=1, 2, …, низшим из которых является H101 и которому соответствует наименьшее значение резонансной частоты fp электромагнитных колебаний данного резонатора. При этом первые два индекса (1 и 0) соответствуют числу полуволн поля стоячей электромагнитной волны в волноводном резонаторе в его поперечном сечении (фиг.1), а третий индекс n=1, 2, … - числу полуволн поля стоячей волны вдоль продольной оси данного прямоугольного резонатора (т.е. вдоль плоскости листового материала). Однородное распределение энергии электромагнитного поля в таком волноводе и резонаторе на его основе приводит к независимости результатов измерений от положения листа центральной части в поперечном направлении.

В прямоугольном резонаторе, в отличие от волновода, имеет место картина стоячей волны с наличием максимумов и минимумов электрического и магнитного полей по объему резонатора. При этом вдоль длины L резонатора в продольной плоскости умещается nλ/2 полуволн, т.е. L=nλ/2, n=1, 2, …. С учетом этого соотношение (1) для рассматриваемого резонатора записывается так:

откуда находим

Для основного типа колебаний H101 при n=1 формула (3) принимает вид

На фиг.2 показано поперечное сечение расщепленного волноводного прямоугольного резонатора 4 с листовым диэлектрическим материалом 5 между открытыми поверхностями 6 в пределах щели 7. В обеих частях полости резонатора 4 имеются диэлектрические вставки 2 и 3 с тем же поперечным размером, что и у резонатора, а продольный размер каждой вставки имеет величину d = L / 2 n ε 1 , n=1, 2, …, где в данном случае L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Резонатор может быть снабжен запредельным волноводом, образованным совокупностью двух металлических полос 8, параллельных друг другу и листовому материалу металлических полос. Каждая из металлических полос 8 подсоединена к свободному краю соответствующей половины расщепленной полости. Наличие запредельного волновода препятствует излучению электромагнитных волн за пределы полости резонатора и тем самым обеспечивает высокое значение добротности резонатора даже при относительно большом расстоянии между половинами расщепленной полости. Выбор размеров металлических листов 8, образующих запредельный волновод, согласуется с размерами полости резонатора 4: критическая частота fкр возбуждения электромагнитных волн в таком запредельном волноводе должна быть выше максимального значения резонансной частоты fpmax резонатора: fкр>fpmax. Положение листа в пределах щели 7 вдоль силовых линий электрического поля обеспечивает максимальную чувствительность датчика. Такое же равномерное распределение энергии существует и при изменении толщины листа, его влагосодержания и плотности, если толщина a листа мала по сравнению с высотой (т.е. общей длиной расщепленной стенки) l резонатора (a<<l). Можно показать, что зависимость резонансной частоты fp от a, диэлектрической проницаемости εm выражается так: fp/fp0≈1-aм(W)-1]/l. Здесь fp0 - начальное значение fp (в отсутствие листа), l - длина расщепленной стенки. Измеряя текущее значение fp, можно определить толщину a листа или диэлектрическую проницаемость εм и связанные с ней функционально значения плотности или влагосодержания листового материала.

Величина εм зависит от плотности, влагосодержания материала. Каждый из этих физических параметров может быть измерен, если толщина а листа неизменна. Определить a и (или) W, а также массу единицы площади М, т.е. произвести многопараметровые измерения, можно путем измерения резонансной частоты fp и амплитуды A резонансного импульса или двух (или более) резонансных частот различных типов колебаний резонатора и их соответствующей функциональной обработки. Такие измерения необходимо производить, в частности, в целлюлозно-бумажной промышленности. Так, например, движущийся бумажный лист может иметь ширину 4300 мм и люфт ±10 мм в направлении, поперечном движению листа. Рассматриваемый подход применим также, когда требуется обеспечить независимость результатов измерений каждого из этих параметров от других возмущающих факторов.

На фиг.3 показана схема устройства с датчиком на основе волноводного прямоугольного резонатора 4 с расщепленной полостью, содержащей движущийся диэлектрический листовой материал 5 в пределах щели 7 резонатора 4. Диэлектрические вставки 2 и 3 расположены в соответствующих частях расщепленной полости. Для обеспечения бесконтактных измерений физических параметров движущегося листового материала 5 этот резонатор снабжен запредельным волноводом, что препятствует излучению электромагнитных волн за пределы полости резонатора. Контролируемый листовой материал 5 расположен между открытыми поверхностями 6 полости в пределах щели 7 вдоль направления силовых линий электрического поля, что соответствует максимуму чувствительности данного резонаторного датчика. Элементы связи 9 и 10 служат для возбуждения электромагнитных колебаний в полости резонатора с помощью генератора электромагнитных колебаний 11 и его подсоединения к электронному блоку 12 для измерения резонансной частоты fp (а также и амплитуды A резонансного импульса или двух (или более) резонансных частот различных типов колебаний резонатора при отмеченных выше многопараметровых измерениях) данного резонатора.

Таким образом, предлагаемое устройство обеспечивает более высокую точность бесконтактных измерений физических параметров диэлектрического листового материала при возможности его поперечных смещений, в том числе в процессе движения. Данное устройство обеспечивает независимость результатов измерений от поперечного положения движущегося листового материала.

Похожие патенты RU2551372C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА В ПОТОКЕ 2016
  • Совлуков Александр Сергеевич
RU2634090C1
ДАТЧИК ФИЗИЧЕСКИХ СВОЙСТВ ВЕЩЕСТВА 2015
  • Совлуков Александр Сергеевич
RU2620773C1
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ЖИДКОСТИ 2016
  • Совлуков Александр Сергеевич
RU2626458C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ СВОЙСТВ ДИЭЛЕКТРИЧЕСКОГО ВЕЩЕСТВА 2021
  • Совлуков Александр Сергеевич
RU2786529C2
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2014
  • Совлуков Александр Сергеевич
RU2550763C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ В ЕМКОСТИ 2014
  • Совлуков Александр Сергеевич
RU2556292C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ОБЪЕКТА 2013
  • Совлуков Александр Сергеевич
RU2521722C1
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ВЕЩЕСТВА В ОТКРЫТОЙ МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ 2011
  • Совлуков Александр Сергеевич
RU2473054C1
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ПАРАМЕТРОВ МЕТАЛЛОДИЭЛЕКТРИЧЕСКИХ СТРУКТУР 2013
  • Усанов Дмитрий Александрович
  • Никитов Сергей Аполлонович
  • Скрипаль Александр Владимирович
  • Орлов Вадим Ермингельдович
  • Фролов Александр Павлович
RU2534728C1
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ В ЕМКОСТИ 2011
  • Совлуков Александр Сергеевич
RU2473052C1

Иллюстрации к изобретению RU 2 551 372 C1

Реферат патента 2015 года УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ ДИЭЛЕКТРИЧЕСКОГО ЛИСТОВОГО МАТЕРИАЛА

Изобретение относится к измерительной технике и может быть использовано для высокоточных бесконтактных измерений физических параметров (влажности, плотности, массы, толщины и др.) различных листовых материалов, движущихся или находящихся в стационарных условиях. В частности, это устройство может быть применено для определения технологических параметров бумажного, картонного и т.п. полотна в процессе его производства. Технический результат - повышение точности измерения. Устройство для измерения физических параметров диэлектрического листового материала содержит волноводный прямоугольный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок. В полости каждой из частей резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, у ее короткозамкнутого торца установлена диэлектрическая вставка с тем же поперечным размером, что и у резонатора, ее продольный размер имеет величину d = L / 2 n ε 1 , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки. Резонатор может быть снабжен запредельным волноводом, образованным совокупностью двух параллельных друг другу и листовому материалу металлических полос, каждая из которых подсоединена к свободному краю соответствующей половины расщепленной полости. 1 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 551 372 C1

1. Устройство для измерения физических параметров диэлектрического листового материала, содержащее волноводный прямоугольный резонатор, выполненный в виде совокупности двух расщепленных в поперечной плоскости идентичных частей, в щели между которыми параллельно ей помещен листовой материал, подсоединенные к данному резонатору с помощью элементов связи генератор электромагнитных колебаний и электронный блок, отличающееся тем, что в полости каждой из частей резонатора, в котором возбуждены колебания типа H10n, n=1, 2, …, у ее короткозамкнутого торца установлена диэлектрическая вставка с тем же поперечным размером, что и у резонатора, ее продольный размер имеет величину , где L - длина резонатора в продольной плоскости, ε - диэлектрическая проницаемость материала каждой вставки.

2. Устройство для измерения физических параметров диэлектрического листового материала по п.1, отличающееся тем, что резонатор снабжен запредельным волноводом, образованным совокупностью двух параллельных друг другу и листовому материалу металлических полос, каждая из которых подсоединена к свободному краю соответствующей половины расщепленной полости.

Документы, цитированные в отчете о поиске Патент 2015 года RU2551372C1

СПОСОБ ИССЛЕДОВАНИЯ БИОЛОГИЧЕСКИХ, БИОХИМИЧЕСКИХ, ХИМИЧЕСКИХ ХАРАКТЕРИСТИК СРЕД И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 1997
  • Никитин П.И.
  • Кабашин А.В.
  • Белоглазов А.А.
RU2141645C1
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОГО ПАРАМЕТРА ОБЪЕКТА 1990
  • Минаев Вячеслав Сергеевич
  • Совлуков Александр Сергеевич
  • Терешин Виктор Ильич
RU2029247C1
ДАТЧИК ДЛЯ ИЗМЕРЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ СРЕДЫ 1993
  • Гвоздев Василий Иванович
  • Кузаев Геннадий Алексеевич
  • Линев Андрей Алексеевич
  • Назаров Игорь Васильевич
  • Черняков Геннадий Михайлович
RU2057325C1
US 4297874 A, 03.11.1981
US 4123702 A, 31.10.1978
US 3981082 A, 21.09.1976

RU 2 551 372 C1

Авторы

Совлуков Александр Сергеевич

Даты

2015-05-20Публикация

2014-01-10Подача