СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДВЕС ДЛЯ КИНЕТИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ Российский патент 2015 года по МПК F16C32/04 F16C39/06 

Описание патента на изобретение RU2551864C1

Изобретение относится к области магнитных опор на основе объемных высокотемпературных сверхпроводников (ВТСП) для кинетических накопителей энергии (КНЭ).

Известно сверхпроводящее подшипниковое устройство (Европатент № ЕР 0575618, МПК F16C 32/04, опубл. 29.12.1993), выполненное в виде двух дисков, на одном из которых размещен сверхпроводник в корпусе, а на другом - постоянные кольцевые магниты. Такое устройство обладает малой несущей способностью и не может быть использовано для кинетического накопителя энергии.

Известно сверхпроводящее подшипниковое устройство для устройства накопления энергии (Заявка Японии № JP 2003329038, МПК F16C 32/04, опубл. 10.11.2003), содержащее ротор, магнитные подшипники, сверхпроводящие подшипники в осевом и радиальном направлениях, выполненные в виде кольцевых сверхпроводников, расположенных в корпусах кольцевой формы, и оппозитно расположенных по отношению к ним наборов кольцевых постоянных магнитов. Однако такая конструкция громоздка и требует больших затрат на охлаждение сверхпроводников ввиду больших тепловых потерь.

Наиболее близким техническим решением является сверхпроводящий магнитный подвес с ВТСП фирмы «Boeing» (Strasik, M., J. Hull, J. Mittleider, J. Gonder, P. Johnson, K. McCrary, and C. McIver. "An Overview of Boeing flywheel Energy Storage Systems with High-temperature Superconducting Bearings." Superconductor Science and Technology 23 (2010): 1-5). Сверхпроводящий магнитный подвес для КНЭ установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, включает в себя статор в виде корпуса, содержащего блок ВТСП элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора.

Недостатком такого решения является необходимость вакуумирования камеры КНЭ, в которой расположен подвес, до давления Р≈1·10-3 Па, необходимого для поддержания температуры блока ВТСП элементов, обеспечивающей работоспособность подвеса. Поддержание такого уровня давления внутри всего объема КНЭ является очень сложной и дорогой технической проблемой, поскольку в объеме КНЭ присутствуют устройства и материалы с высоким уровнем газоотделения (связующий материал волокон маховика, изоляционные материалы и т.п.), узкие тупиковые зазоры и щели. Это увеличивает время откачки, ухудшает предельный вакуум при откачке, требует применения вакуумного оборудования с высокими скоростями откачки. В тоже время для эффективного функционирования самого маховика с точки зрения минимизации потерь на трение при вращении достаточно обеспечить давление в камере КНЭ примерно P≈1 Па. К недостаткам следует отнести также то, что такая конструкция подвеса не является универсальной, применима только при размещении ее в вакуумной камере, что затрудняет отработку и технологические испытания статора.

Техническим результатом использования данного изобретения является упрощение конструкции, повышение эффективности работы вакуумной системы, обеспечение удобства проведения технологических испытаний подвеса.

Указанный технический результат достигается тем, что сверхпроводящий магнитный подвес (СМП) для кинетического накопителя энергии (КНЭ) установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, включает в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора. Корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса КНЭ, а корпус статора снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм.

На фиг.1 показана схема КНЭ со сверхпроводящим магнитным подвесом, на фиг.2 - схема подвеса в разрезе.

Сверхпроводящий магнитный подвес для кинетического накопителя энергии содержит статор 1, который закреплен внутри корпуса 2 КНЭ, тут же расположен ротор 3 на валу 4. Статор 1 жестко соединен с корпусом 2 КНЭ с помощью кронштейнов (фиг.1). Корпус 2 КНЭ снабжен системой вакуумной откачки 6. Корпус статора снабжен автономной системой вакуумной откачки 7. На валу 4 закреплены постоянные магниты 8 (фиг.2). В корпусе подвеса 1 закреплен блок с ВТСП элементами 9 с помощью кронштейнов с низкой теплопередачей 10. Для повышения эффективности теплозащиты блока 9 вокруг него проложена экранно-вакуумная изоляция 11. Торцевые поверхности корпуса статора 12, сопрягаемые с валом, снабжены пассивными вакуумными затворами, выполненными в виде втулок 13. Корпус статора соединен с системой охлаждения 14 (на фиг.1 не показана).

Сверхпроводящий магнитный подвес работает следующим образом. Сначала включается система вакуумной откачки 6, создающая внутри корпуса КНЭ вакуум с давлением Р≈1 Па, достаточным для минимизации потерь от аэродинамического нагрева накопительного элемента (маховика). После этого включается автономная система вакуумной откачки статора 7, которая доводит давление в корпусе статора 1 до величины Р≈1·10-3 Па. При этом выхлоп автономной системы статора производится внутрь корпуса КНЭ. Втулки корпуса статора, обеспечивая зазор с валом в пределах 0,25…0,75 мм на длине 50…100 мм, позволяют создать такой вакуумный затвор, при котором автономная система вакуумной откачки статора, учитывая, что объем которого (5…7 литров) на порядки меньше объема корпуса КНЭ (700…1000 литров), позволяет поддерживать давление в статоре величиной Р<1·10-3 Па. Эффективность эксплуатации такого затвора может быть существенно повышена путем заполнения зазора вязким веществом с малым газоотделением. Поддержание в процессе работы указанного значения величины давления достаточно для длительной эффективной работы подвеса. Величины зазоров и длины в сопряжении были определены в результате экспериментов на макете подвеса, построенного по приведенной в заявке схеме. После достижения давления в статоре до величины Р≈1·10-3 Па начинается захолаживание блока ВТСП элементов при помощи системы охлаждения 14. В дальнейшем производятся действия по вводу КНЭ в эксплуатацию: раскручивание ротора с маховиком и т.д.

Поддержание в статоре указанного давления позволяет настолько уменьшить теплоприток к ВТСП элементам, что корпус статора можно изготавливать без внутренней стенки, обращенной к валу, основное назначение которой было обеспечение теплозащиты блока ВТСП элементов от тепла, поступающего от вала. Следовательно, исключение внутренней стенки позволяет приблизить ВТСП элементы к постоянным магнитам, уменьшить величину зазора между ротором и статором, таким образом повысив жесткость подвеса. При этом снижается вероятность касания элементов ротора и статора. Экспериментальные исследования показали, что при осуществлении такой конструкции зазор был уменьшен на 0,5…0,7 мм, что повысило жесткость примерно на 15%. Кроме того, даже случайное касание ротором экранно-вакуумной изоляции 11 не будет приводить к тем последствиям, к которым привело бы касание ротора о твердую поверхность внутренней стенки статора.

Похожие патенты RU2551864C1

название год авторы номер документа
КОМБИНИРОВАННЫЙ СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДВЕС ДЛЯ КИНЕТИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ 2015
  • Асеев Василий Викторович
  • Дергачев Павел Андреевич
  • Ивлев Александр Сергеевич
  • Костерин Александр Андреевич
  • Кулаев Юрий Владимирович
  • Курбатов Антон Павлович
  • Курбатова Екатерина Павловна
  • Курбатов Павел Александрович
  • Маевский Владимир Александрович
  • Молоканов Олег Николаевич
RU2610880C1
ЭЛЕКТРОМЕХАНИЧЕСКИЙ СВЕРХПРОВОДЯЩИЙ НАКОПИТЕЛЬ ЭНЕРГИИ 2015
  • Смоленцев Николай Иванович
RU2601590C1
Кинетический накопитель энергии с супермаховиком 2019
  • Антипов Виктор Николаевич
  • Грозов Андрей Дмитриевич
  • Иванова Анна Владимировна
RU2710590C1
ЭЛЕКТРОМЕХАНИЧЕСКИЙ НАКОПИТЕЛЬ ЭНЕРГИИ 2020
  • Смоленцев Николай Иванович
RU2760784C1
ЭЛЕКТРОМЕХАНИЧЕСКИЙ НАКОПИТЕЛЬ ЭНЕРГИИ 2022
  • Смоленцев Николай Иванович
  • Бондарев Юрий Леонидович
  • Никитин Александр Викторович
RU2791601C1
СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДШИПНИК И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2008
  • Артамонов Владимир Иванович
  • Вартанян Валерий Артаваздович
  • Ивлев Александр Сергеевич
  • Иванов Виктор Ефимович
  • Лыхин Владимир Алексеевич
  • Маевский Владимир Александрович
  • Сухарев Михаил Михайлович
  • Грибанов Сергей Владимирович
  • Курбатов Павел Александрович
  • Матвеев Валерий Александрович
  • Нижельский Николай Александрович
  • Полущенко Ольга Леонидовна
RU2383791C1
Магнитная опора на высокотемпературных сверхпроводниках для горизонтальных валов 2017
  • Асеев Василий Викторович
  • Гостеев Сергей Григорьевич
  • Ивлев Александр Сергеевич
  • Кужель Олег Станиславович
  • Маевский Владимир Александрович
RU2659661C1
Синхронный электрический мотор-генератор для кинетического накопителя энергии 2020
  • Дергачев Павел Андреевич
  • Курбатова Екатерина Павловна
  • Молоканов Олег Николаевич
  • Курбатов Павел Александрович
RU2726947C1
МАГНИТНЫЙ ПОДШИПНИК НА ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКАХ (ВАРИАНТЫ) 2009
  • Артамонов Владимир Иванович
  • Вартанян Валерий Артаваздович
  • Елисеев Юрий Сергеевич
  • Иванов Виктор Ефимович
  • Ивлев Александр Сергеевич
  • Лыхин Владимир Алексеевич
  • Маевский Владимир Александрович
  • Сухарев Михаил Михайлович
RU2413882C1
ЭЛЕКТРОМАГНИТНЫЙ ПОДВЕС ВЕРТИКАЛЬНОГО ВАЛА РОТОРА 2016
  • Москалев Юрий Владимирович
RU2626794C1

Иллюстрации к изобретению RU 2 551 864 C1

Реферат патента 2015 года СВЕРХПРОВОДЯЩИЙ МАГНИТНЫЙ ПОДВЕС ДЛЯ КИНЕТИЧЕСКОГО НАКОПИТЕЛЯ ЭНЕРГИИ

Изобретение относится к области магнитных опор на основе объемных высокотемпературных сверхпроводников (ВТСП) для кинетических накопителей энергии. Сверхпроводящий магнитный подвес для кинетического накопителя энергии (КНЭ) установлен в корпусе КНЭ, соединенном с системой вакуумной откачки, и включает в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора. Корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса КНЭ. Корпус статора также снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм. Технический результат: упрощение конструкции, повышение эффективности работы вакуумной системы, обеспечение удобства проведения автономных технологических испытаний подвеса. 2 ил.

Формула изобретения RU 2 551 864 C1

Сверхпроводящий магнитный подвес для кинетического накопителя энергии, установленный в корпусе кинетического накопителя энергии, соединенном с системой вакуумной откачки, включающий в себя статор в виде корпуса, содержащего блок высокотемпературных сверхпроводящих (ВТСП) элементов с системой охлаждения, постоянные магниты, установленные на валу ротора с зазором относительно корпуса статора, отличающийся тем, что корпус статора снабжен автономной системой вакуумной откачки, причем выхлоп автономной системы откачки соединен с полостью корпуса кинетического накопителя энергии, а корпус статора снабжен пассивными вакуумными затворами, выполненными в виде втулок, закрепленных на торцевых поверхностях корпуса подвеса, сопрягаемых с валом, при этом внутренний диаметр втулок превышает диаметр вала ротора на 0,5…1,5 мм, а их осевой размер составляет 50…100 мм.

Документы, цитированные в отчете о поиске Патент 2015 года RU2551864C1

СПОСОБ ПОЛУЧЕНИЯ А'-ДЁГЙДРОКОРТИЗОНА 0
SU133986A1
JP 2003329038 A, 19.11.2003
Источник временных сдвигов 1976
  • Васильев Евгений Александрович
  • Моргаевский Николай Евгеньевич
  • Мартьянов Валентин Михайлович
SU575618A1
БЕСКОНТАКТНАЯ РАДИАЛЬНО-УПОРНАЯ ОПОРА НА ВЫСОКОТЕМПЕРАТУРНЫХ СВЕРХПРОВОДНИКАХ 2003
RU2270940C9

RU 2 551 864 C1

Авторы

Матвеев Валерий Александрович

Полущенко Ольга Леонидовна

Нижельский Николай Александрович

Маевский Владимир Александрович

Ивлев Александр Сергеевич

Асеев Василий Викторович

Ковалев Лев Кузьмич

Полтавец Владимир Николаевич

Даты

2015-05-27Публикация

2014-04-04Подача