СПОСОБ ПУТЕВОГО ГЕНЕРИРОВАНИЯ УСТОЙЧИВОЙ СТРУКТУРИРОВАННОЙ МЕЛКОДИСПЕРСНОЙ ГАЗО-ЖИДКОСТНОЙ СМЕСИ В УСЛОВИЯХ ПОРЦИОННОЙ ПОДАЧИ ЖИДКОСТИ И ГАЗА Российский патент 2015 года по МПК E21B43/12 E21B43/25 B01F3/04 

Описание патента на изобретение RU2553105C1

Изобретение относится к нефтяной и газовой промышленности, в частности к геолого-техническим мероприятиям при капитальном ремонте скважин, а именно к очистке каналов перфорации и пористой среды призабойной зоны пласта (ПЗП), а также к глушению и освоению скважин после подземного и капитального ремонта с помощью газо-жидкостных смесей (ГЖС).

Прототипом заявляемого является способ смешивания жидкости и газа, включающий подачу, рассеивание и ввод газа в жидкость, перемешивание газа с жидкостью при совместном движении в трубопроводе, причем ввод рассеянного потока газа в поток жидкости осуществляют в точке равенства абсолютных давлений газа и жидкости /патент РФ №2193915, опубл. 10.12.2002/. Согласно описанию, возможно автоматическое регулирование работы источников подачи газа и жидкости: компрессора и/или насоса, чтобы обеспечить равенство абсолютных давлений газа и жидкости в момент их смешивания. Технический результат состоит в равномерном смешивании газа и жидкости и исключении пульсирующего потока.

Способ-прототип имеет следующие недостатки. Размер пузырька рассеиваемой газовой фазы соответствует диаметру отверстий в перфорированной части газопровода, применяемой для рассеивания вводимого в жидкость газа, то есть не может быть менее 1,5-2 мм. Соответственно невозможно получение стабильной газо-жидкостной системы и тем более стабильной ГЖС, так как пузырьки указанного объема всплывают под действием архимедовой силы и далее укрупняются, объединяясь, что приводит к распаду газо-жидкостной системы. Кроме того, при порционном характере подачи жидкости, газа или жидкости и газа, который в реальности имеет место при использовании штатной техники бригад КРС (насосный агрегат АЦ - 32 и компрессорная установка СДА - 9, азотная установка АГУ - 2М или их аналоги), равномерное смешивание и распределение газа в жидкости при совместном движении в трубопроводе исключается, поэтому способ-прототип не обеспечивает создания гомогенной газо-жидкостной системы и тем более гомогенной ГЖС.

Решаемая задача и ожидаемый технический результат заключаются в повышении эффективности путевого генерирования устойчивой структурированной мелкодисперсной газо-жидкостной смеси в условиях порционной подачи жидкости и газа, за счет подачи в диспергатор гомогенной газо-жидкостной системы, сформированной в успокоительном участке трубопровода.

Поставленная задача решается тем, что заявляемый способ смешивания жидкости и газа, включающий ввод рассеянного потока газа в поток жидкости и перемешивание газа с жидкостью при совместном движении в трубопроводе, отличается тем, что дополнительно полученную газо-жидкостную систему прокачивают через успокоительный участок трубопровода с последующим диспергированием. Расход газа и жидкости соответствует объемному соотношению газа и жидкости 1,25-1,07 при абсолютном давлении в трубопроводе.

Способ осуществляется следующей последовательностью операций.

1. Для ввода рассеянного потока газа в поток жидкости через Т-образный тройник (аналогично прототипу), подают газ и жидкость, с заданным расходом, в трубопровод, оснащенный газопроводом с перфорированным участком.

Расход задают соответственно установленному опытным путем объемному соотношению газа и жидкости 1,25-1,07 (при абсолютном давлении в трубопроводе), обеспечивающему наилучшую устойчивость получаемой ГЖС.

Перемешивание газа с жидкостью при совместном движении в трубопроводе, оснащенном газопроводом с перфорированнъш участком практически на всю длину указанного трубопровода (аналогично прототипу), приводит к получению газожидкостной системы (пенной системы) с размером пузырьков газа в жидкости более 1,5-2 мм (отверстия с меньшим диаметром будут забиты мехпримесями, содержащимися в газе и жидкости; кроме того, диаметр отверстий менее 1,5 мм приведет к значительному гидравлическому сопротивлению перфорированного участка газопровода, вызываемому силами поверхностного натяжения на границе газ-жидкость при выходе газового пузырька из перфорации).

2. Для обеспечения равномерного, а не порционного распределения газа в жидкости по длине потока в трубопроводе полученную газо-жидкостную систему дополнительно прокачивают через успокоительный участок трубопровода длиной не менее 2 м (и не более 12 м для исключения расслаивания газо-жидкостной системы; оптимальной является длина 6-8 м). Успокоительный участок трубопровода представляет собой продолжение трубопровода, упомянутого в п.1 перечня последовательности операций способа, за исключением оснащения успокоительного участка газопроводом с перфорированным участком.

3. Далее полученный гомогенный поток газо-жидкостной системы с равномерным распределением газа в жидкости по длине потока в трубопроводе подвергают диспергированию, прокачивая через диспергатор (например, по патенту на полезную модель №64938, опубл. 27.07.2007) для генерирования потока устойчивой мелкодисперсной структурированной ГЖС.

Далее поток устойчивой мелкодисперсной структурированной ГЖС, пригодной для геолого-технических мероприятий при капитальном ремонте, закачивают в скважину.

Патентуемая последовательность операций найдена заявителями экспериментально.

Условия проведения экспериментов.

Испытания проводились с использованием воды, азота и поверхностно-активного вещества ОП-10. Процентное содержание ОП-10 в воде 0,2%.

Моментальный расход воды 2 дм3/сек при нормальных условиях обеспечивал насосный агрегат АЦ-32 с диаметром поршней 115 мм; моментальный расход азота 150 дм3/сек при нормальных условиях обеспечивала азотная компрессорная установка СДА-9. Среднее абсолютное давление в трубопроводе при проведении экспериментов составляло 6 МПа.

Примеры

1) Диспергатор расположен сразу после трубопровода, оснащенного газопроводом с перфорированным участком практически на всю длину указанного трубопровода (аналогично прототипу), где происходит ввод и перемешивание рассеянного потока газа с потоком жидкости, без успокоительного участка.

Точка отбора пробы находится непосредственно за диспергатором. Отбор пробы - в мерный стакан объемом 1 литр диаметром 6,6 см, при атм. давлении, пробу наблюдают при атм. давлении до появления на донце стакана жидкой фазы высотой 1 см. Время появления указанного объема жидкой фазы составляет 87 сек.

2) Диспергатор расположен после успокоительного участка длиной 2 м, расположенного, в свою очередь, после трубопровода, оснащенного газопроводом с перфорированным участком практически на всю длину указанного трубопровода. Точка отбора пробы находится непосредственно за диспергатором. Отбор пробы - в мерный стакан объемом 1 литр диаметром 6,6 см, при атм. давлении, пробу наблюдают при атм. давлении до появления на донце стакана жидкой фазы высотой 1 см. Время появления указанного объема жидкой фазы составляет 312 сек.

3) Диспергатор расположен после успокоительного участка длиной 4 м, расположенного после трубопровода, оснащенного газопроводом с перфорированным участком практически на всю длину указанного трубопровода.

Точка отбора пробы находится непосредственно за диспергатором. Отбор пробы - в мерный стакан объемом 1 литр диаметром 6,6 см, при атм. давлении, пробу наблюдают при атм. давлении до появления на донце стакана жидкой фазы высотой 1 см. Время появления указанного объема жидкой фазы составляет 718 сек.

4) Газ и жидкость подаются через Т-образный тройник в трубопровод, оснащенный газопроводом с перфорированным участком на всю длину указанного трубопровода (аналогично прототипу), где происходит ввод и перемешивание рассеянного потока газа с потоком жидкости, далее - прокачка газо-жидкостной системы через два успокоительных участка по 4 м, на конце каждого из которых установлен диспергатор. Точка отбора пробы находится непосредственно за последним диспергатором. Отбор пробы - в мерный стакан объемом 1 литр диаметром 6,6 см, при атм. давлении, пробу наблюдают при атм. давлении до появления на донце стакана жидкой фазы высотой 1 см. Время появления указанного объема жидкой фазы составляет 1315 сек.

ГЖС, полученная в результате проведения 4-ого эксперимента, отобранная в сосуд высокого давления с прозрачным окном, была визуально исследована под микроскопом с мерной линейкой. Диаметр пузырьков азота составил 7-12 мкм; пузырьки располагались в виде сотовой системы; вода находилась между пузырьками в пленочном состоянии; толщина пленки между соседними пузырьками составляла 3-5 мкм, то есть имелись все признаки устойчивой структурированной мелкодисперсной газо-жидкостной смеси.

Как видно из примеров, увеличение длины успокоительных участков и их количества при последовательном соединении и увеличение соответствующего количеству успокоительных участков количества диспергаторов значительно увеличивает период распада генерируемой ГЖС. Количество успокоительных участков с диспергаторами на конце каждого из них может быть и более двух.

Изобретательский уровень заявляемого способа обусловлен выявленным заявителями эффектом перемешивания и перераспределения газа в жидкости на успокоительных участках за счет разности скоростей движения сред по сечению трубопровода: максимальная скорость - по оси трубопровода, минимальная - у стенки (эпюра скоростей [Альтшуль А.Д., Киселев П.Г. Гидравлика и аэродинамика. М., Стройиздат, 1975, стр. 156-162; Рабинович Е.З. Гидравлика. М., Государственное издательство математической литературы, 1963. Стр. 147-151]).

Так как вся применяемая при геолого-технических мероприятиях штатная насосная техника (насосные агрегаты, компрессоры, азотные установки), как отмечалось выше, относится к механизмам объемного действия, т.е. к поршневым механизмам, подача через Т-образный тройник и перфорированный участок газопровода газа и жидкости имеет порционный характер. Синхронность работы насосного агрегата с компрессором или азотной установкой по ряду конструкционных особенностей агрегатов является редким частным случаем. Настроить синхронную работу насосной и компрессорной техники практически невозможно. Поэтому без успокоительного участка полученный после прокачки жидкости и газа через тройник с перфорированным газопроводом поток газо-жидкостной системы (пенной системы) с размером пузырьков газа в жидкости более 1,5-2 мм будет характеризоваться то значительным избытком газа в поступающей в диспергатор порции газо-жидкостной системы, то его недостатком относительно указанного выше оптимального объемного соотношения газа и жидкости 1,25-1,07. Это существенно ухудшает качество получаемой ГЖС по дисперсности, плотности и устойчивости. Введение между тройником с перфорированным газопроводом и диспергатором успокоительного участка трубопровода приводит к следующим процессам. По мере формирования ламинарного потока, в котором скорости распределены по сечению трубопровода в виде параболы относительно оси трубопровода, будет происходить проникновение центральной части потока газо-жидкостной системы одной порции в центральную часть потока газо-жидкостной системы другой - впереди идущей - порции, что приведет к более равномерному распределению газа в жидкости по длине потока газо-жидкостной системы в трубопроводе, вплоть до получения гомогенной газо-жидкостной системы, перед ее прокачкой через диспергатор. Таким образом достигаются оптимальные условия путевого генерирования потока устойчивой структурированной мелкодисперсной ГЖС, а именно: объемного соотношения газа и жидкости 1,25-1,07.

Похожие патенты RU2553105C1

название год авторы номер документа
Способ удаления жидкости из скважин и ПЗП гидропневматическим свабированием 2021
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2753721C1
СПОСОБ ГЛУШЕНИЯ СКВАЖИН 2010
  • Ерилин Сергей Александрович
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2431736C1
СПОСОБ ГЛУШЕНИЯ СКВАЖИНЫ 2013
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2545197C1
УСТРОЙСТВО ДЛЯ ОЧИСТКИ КАНАЛОВ ПЕРФОРАЦИИ И ДЕКАЛЬМАТАЦИИ ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА 2014
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2545232C1
УСТРОЙСТВО ДЛЯ ПРИГОТОВЛЕНИЯ СМЕСЕЙ И РАСТВОРОВ 2009
  • Ерилин Сергей Александрович
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2418625C1
СПОСОБ И УСТРОЙСТВО ДЛЯ ОЧИСТКИ КАНАЛОВ ПЕРФОРАЦИИ И ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА УСЛОВНО БЕСКОНЕЧНОЙ ТОЛЩИНЫ 2014
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2544937C1
УСТРОЙСТВО ДЛЯ УСТАНОВКИ ПРИБОРОВ НА НАРУЖНОЙ ПОВЕРХНОСТИ НАСОСНО-КОМПРЕССОРНОЙ ТРУБЫ 2015
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2577050C1
РАСХОДОМЕР 2017
  • Репин Дмитрий Николаевич
  • Туктамышев Дамир Хазикаримович
RU2643688C1
УСТРОЙСТВО ДЛЯ СЕЛЕКТИВНОЙ ОЧИСТКИ КАНАЛОВ ПЕРФОРАЦИИ И ПРИЗАБОЙНОЙ ЗОНЫ ПЛАСТА УСЛОВНО БЕСКОНЕЧНОЙ ТОЛЩИНЫ 2010
  • Репин Дмитрий Николаевич
  • Ерилин Сергей Александрович
  • Туктамышев Дамир Хазикаримович
RU2450118C1
ИЗМЕРИТЕЛЬ МОМЕНТАЛЬНОГО РАСХОДА 2008
  • Репин Дмитрий Николаевич
  • Ерилин Сергей Александрович
  • Туктамышев Дамир Хазикаримович
RU2372590C1

Реферат патента 2015 года СПОСОБ ПУТЕВОГО ГЕНЕРИРОВАНИЯ УСТОЙЧИВОЙ СТРУКТУРИРОВАННОЙ МЕЛКОДИСПЕРСНОЙ ГАЗО-ЖИДКОСТНОЙ СМЕСИ В УСЛОВИЯХ ПОРЦИОННОЙ ПОДАЧИ ЖИДКОСТИ И ГАЗА

Изобретение относится к нефтяной и газовой промышленности и, в частности, к геолого-техническим мероприятиям при капитальном ремонте скважин - очистке каналов перфорации и пористой среды призабойной зоны пласта, а также к глушению и освоению скважин после подземного и капитального ремонта с помощью газо-жидкостных смесей. Технический результат - повышение эффективности генерирования устойчивой структурированной мелкодисперсной газо-жидкостной смеси в условиях порционной подачи жидкости и газа. Способ включает ввод рассеянного потока газа в поток жидкости и перемешивание газа с жидкостью при совместном движении в трубопроводе. Подачу газа и жидкости осуществляют порционным характером. Полученную газо-жидкостную систему дополнительно прокачивают через успокоительный участок трубопровода с последующим диспергированием. При этом используют успокоитель длиной 2-12 м. Расход газа и жидкости обеспечивают из условия их объемного соотношения 1,25-1,07. При этом применяют поверхностно-активное вещество. Газо-жидкостную систему обеспечивают с размером пузырьков 7-12 мкм в виде сотовой системы с водой между соседними пузырьками в пленочном состоянии. 1 пр.

Формула изобретения RU 2 553 105 C1

Способ смешивания жидкости и газа, включающий ввод рассеянного потока газа в поток жидкости и перемешивание газа с жидкостью при совместном движении в трубопроводе, отличающийся тем, что при подаче газа и жидкости порционным характером дополнительно полученную газо-жидкостную систему прокачивают через успокоительный участок трубопровода с последующим диспергированием, причем используют успокоительный участок длиной 2-12 м, расход газа и жидкости обеспечивают из условия их объемного соотношения 1,25-1,07 с применением поверхностно-активного вещества, газо-жидкостную систему обеспечивают с размером пузырьков 7-12 мкм в виде сотовой системы с водой между соседними пузырьками в пленочном состоянии.

Документы, цитированные в отчете о поиске Патент 2015 года RU2553105C1

СПОСОБ СМЕШИВАНИЯ ЖИДКОСТИ И ГАЗА 2001
  • Королев С.В.
  • Пешков М.И.
  • Маликов В.Ф.
RU2193915C1
УСТРОЙСТВО ДЛЯ ГЕНЕРАЦИИ ПОТОКА ОГНЕТУШАЩЕГО ВЕЩЕСТВА 2004
  • Душкин Андрей Леонидович
  • Карпышев Александр Владимирович
  • Протасов Алексей Николаевич
  • Рязанцев Николай Николаевич
RU2277957C1
SU 1785115 А1, 10.05.1996
ГАЗОЖИДКОСТНЫЙ СМЕСИТЕЛЬ 2007
  • Абдулмазитов Рафиль Гиниятуллович
  • Рамазанов Рашит Газнавиевич
  • Страхов Дмитрий Витальевич
  • Зиятдинов Радик Зяузятович
  • Оснос Владимир Борисович
RU2336940C1
Сатуратор для сатурации дефекованных сахарсодержащих растворов 1989
  • Сапронов Алексей Романович
  • Чериков Сатыбалды Турдумаматович
  • Славянский Анатолий Анатольевич
  • Кулмырзаев Асылбек Атамырзаевич
  • Бекмурзаева Телкун Абакировна
SU1671695A1
УСТРОЙСТВО ДЛЯ КОНТРОЛЯ КРУТЯЩЕГО МОМЕНТА НА ВАЛУ ЭЛЕКТРОДВИГАТЕЛЯ 2003
  • Тукмаков В.П.
  • Алексеев А.К.
  • Дмитриев Г.Н.
  • Кудряшов Ю.П.
  • Титова Н.В.
  • Тукмаков П.К.
  • Титов А.Д.
  • Дмитриева С.К.
  • Михайлова Е.Г.
  • Гоник Д.С.
RU2229106C1

RU 2 553 105 C1

Авторы

Репин Дмитрий Николаевич

Туктамышев Дамир Хазикаримович

Даты

2015-06-10Публикация

2014-06-24Подача