БОРТОВАЯ КОРОТКОВОЛНОВАЯ АНТЕННА ПОДВИЖНОГО ОБЪЕКТА Российский патент 2015 года по МПК H01Q9/00 

Описание патента на изобретение RU2556446C1

Изобретение относится к радиотехнике, а именно к антенной технике, и, в частности, заявленная бортовая коротковолновая антенна (БКВА) подвижного объекта (ПО) может быть использована в качестве передающей ненаправленной антенны зенитного излучения совместно с коротковолновой (KB) радиостанцией средней мощности, установленной на борту ПО, например автомобиля.

Известны БКВА, установленные на борту ПО, описанные в книге Гвоздев И.Н. и др. Характеристики антенн радиосистем связи. - Л.: ВАС, 1978, Табл. 77, 78. - С.101-105. Указанные БКВА представляют собой малогабаритные излучатели (МГИ) емкостного типа: в виде двух параллельно включенных несимметричных вибраторов (с.101), симметричного вибратора, горизонтально закрепленного на металлической крыше ПО, или магнитного типа (с.103-105); в виде одной или нескольких включенных в параллель вертикальных рамок, установленных на металлической крыше ПО. Излучатели емкостного и магнитного типов подключены к блоку настройки и согласования (БНС), вход которого подключен к выходу бортовой радиостанции.

Недостатком указанных аналогов является их низкая эффективность, характеризуемая коэффициентом полезного действия (КПД), что обусловлено высоким уровнем нескомпенсированного связанного реактивного ноля. Это в свою очередь приводит к дополнительным тепловым потерям в органах настройки и элементах конструкции антенны.

Известна также БКВА, описанная в книге: Виноградов Б.А. и др. Радиочастотная служба и антенные устройства. - Л.: ВАС, 1982.- С.113-114. Антенна состоит из П-образной щели, вырезанной в боковых и верхней стенках металлического кузова автомобиля, промежуточного возбудителя, установленного в металлизированном подкрышевом пространстве ПО непосредственно у раскрыва горизонтальной части щели. Промежуточный возбудитель выполнен в виде многовитковой рамки с возможностью изменения числа витков путем их замыкания на корпус ПО. Вход промежуточного возбудителя подключен к БНС, который в свою очередь подключен к выходу бортовой радиостанции.

Недостатком рассмотренного аналога является также относительная низкая эффективность (КПД) как из-за тепловых потерь в витках промежуточного возбудителя, так и из-за малой действующей длины щелевого излучателя.

Наиболее близким аналогом (прототипом) к заявленной БКВА является известная Бортовая декаметровая антенна подвижного объекта по патенту РФ №2484560, МПК H01Q 9/00, опубл. 10.06.2013 г.

Антенна-прототип состоит из промежуточного возбудителя (ПрВ) в виде изогнутого в вертикальной плоскости проводника, установленного над металлической поверхностью в пределах металлизированного подкрышевого пространства (МПКП) вдоль его предельной оси симметрии. Один конец ПрВ подключен к блоку реактивных дискретных нагрузок (БРДН), второй - к БНС. Средняя часть крышевой поверхности ПО выполнена диэлектической. К примыкающим к центру МПКП кромкам металлических частей крышевой поверхности подключены экранирующие элементы (ЭЭ) в виде ленточных проводников. На кузове ПО шарнирно закреплены концевые емкостные нагрузки, обеспечивающие работу антенны в режиме земных волн.

Благодаря установке промежуточного возбудителя в подкрышевом пространстве и использованию экранирующих элементов обеспечивается возбуждение корпуса ПО, что повышает эффективность БКВА в целом.

Однако ближайший аналог имеет недостатки, заключающиеся в относительно низкой эффективности работы в режиме земных волн; в наличии демаскирующих признаков факта размещения на борту ПО KB антенны, обусловленные необходимостью использования громоздких концевых емкостных нагрузок.

Целью изобретения является разработка БКВА, обеспечивающей повышение ее КПД в режиме земной волны при одновременном исключении демаскирующих признаков, указывающих на факт установки на ПО KB бортовой антенны.

Поставленная цель достигается тем, что в известной БКВА ПО, средняя треть металлической крышевой поверхности которого выполнена диэлектрической, содержащей ПрВ с ЭЭ, подключенный одним концом к БДРН, а другим - к БНС, вход которого подключен к выходу бортовой радиостанции, ПрВ выполнен в виде двух параллельно включенных вертикальных П-образных проводников. П-образные проводники установлены параллельно боковым стенкам ПО вне его экранированного внутреннего объема. Горизонтальная часть каждого П-образного проводника расположена в металлизированном подкрышевом пространстве ПО. Каждая пара ЭЭ установлена над горизонтальной частью П-образного проводника, и каждый ЭЭ одним концом подключен к кромке металлической части крышевой поверхности, примыкающей к ее диэлектической части. Между примыкающими к друг другу торцами ЭЭ в середине горизонтальной части каждого П-образного проводника установлен зазор Δ=(0,9-l,5)d, где d - диаметр поперечного сечения П-образного проводника. ЭЭ выполнены в виде ленточных проводников и установлены на расстоянии (2-4)·10-4 λmax, где λmax - максимальная длина волны рабочего диапазона волн, от поверхности П-образного проводника.

Благодаря новой совокупности существенных признаков за счет изменения распределения амплитуд тока вдоль П-образного проводника обеспечивается либо формирование диаграммы направленности (ДН) с максимумом излучения в зенит (режим ионосферных волн), либо ДН с максимумом, ориентированным вдоль поверхности земли, чем обеспечивается эффективная работа антенны в каждом из режимов.

Одновременно практически исключаются демаскирующие признаки факта установки на борту ПО KB антенны.

Заявленная БКВА поясняется чертежами, на которых показано:

на фиг.1 - общий вид БКВА (вид сбоку);

на фиг.2 - вид БКВА сверху;

на фиг.3 - эквивалентная схема антенны;

на фиг.4 - распределение амплитуд тока:

а) в режиме ионосферных волн;

б) в режиме земных волн;

фиг.5 - диаграммы направленности БКВА в режиме ионосферных и земных волн;

фиг.6 - результаты сравнительных измерений уровня излучаемого электрического поля.

Бортовая коротковолновая антенна подвижного объекта, показанная на фиг.1, состоит из ПрВ 1, выполненного в виде двух параллельно включенных П-образных проводников с диаметром поперечного сечения d, с горизонтальной частью lг и вертикальными частями с высотами по lв, П-образные проводники установлены вертикально и параллельно боковым поверхностям ПО вне его экранированного внутреннего объема 2. Проекция периметра каждого П-образного проводника вписана в пределы площади боковой поверхности ПО. Средняя часть крышевой поверхности 3 длиной Lд выполнена диэлектической, а ее две периферийные части с длинами по Lм - металлическими. По два ЭЭ 4 в виде ленточных проводников шириной «вэ» установлены над горизонтальной частью каждого П-образного проводника, которая в свою очередь размещена в подкрышевом пространстве 5 высотой Hп, экранированном от внутреннего объема 2 ПО. Один конец каждого ЭЭ 4 подключен к кромке металлической части крышевой поверхности 6, примыкающей к ее диэлектической части 3 (сечения О-О′ на фиг.1, 2). Между примыкающими друг к другу торцами ЭЭ 4 в середине горизонтальной части каждого П-образного проводника 1 установлен зазор Δ=(0,9-1,5)d. В частности, ЭЭ 4 могут быть выполнены в виде полуцилиндрического проводника, установленного соосно с П-образным проводником 1 (см. фиг.1а). ЭЭ 4 установлены на высоте tэ от поверхности горизонтальной части П-образного проводника 1. П-образные проводники 1 с помощью горизонтальных отрезков проводника длиной lпр 7 соединены в параллель и подключены одним концом к БДРН 8, а другим - к БНС 9. Вход БНС 9 подключен к выходу бортовой радиостанции (на фиг.2 не показана).

БНС 9 предназначен для настройки и согласования антенны во всем рабочем диапазоне частот. БНС 9 может быть выполнен в различных вариантах, в частности в виде Г-образной схемы, показанной на фиг.3. В данном варианте БНС 9 включает конденсатор переменной емкости Cн (элемент настройки) и конденсатор переменной емкости Cс (элемент согласования). Порядок расчета Cн и Cс известен и описан, например, в книге: Гавеля Н.П., Истрашкин А.Д. и др. Антенны. Часть I. Под ред. Ю.К. Муравьева. - Л.: ВКАС 1963. - С.538-542.

БДРН 8 предназначен для подключения к ПрВ реактивной нагрузки, при которой с помощью дискретных емкостных элементов (ДРЭ) в соответствующем поддиапазоне частот обеспечивается формирование пучности (режим ионосферных волн) или узла (режим земных волн) тока в центре горизонтальных частей П-образных проводников 1. В качестве БРДН 8 может быть использовано известное техническое решение: «Дискретная реактивная цепь» по патенту РФ №2355102, опубл. 10.05.2009 г.

Заявленная БКВА работает следующим образом.

При подключении входа БНС 9 к выходу радиостанции высокочастотный (в.ч.) ток протекает по параллельно включенным П-образным проводникам 1. Распределение амплитуд в.ч. токов по проводникам 1 будет определяться выбранной рабочей частотой fp и номинальным значением емкостной нагрузки, подключенной в БДРН 8 с помощью замыкания (размыкания) контактов соответствующих выключателей (см. фиг.3). Значение реактивной нагрузки на заданной рабочей частоте определяют в зависимости от выбранного режима работы. При работе ионосферными волнами максимум ДН необходимо формировать в зенит, следовательно пучность в.ч. тока должна быть установлена в центре горизонтальной части П-образных проводников, как показано на фиг.4а. При необходимости работы в режиме земных волн максимум ДН необходимо формировать под углами, близкими к горизонту. В этом случае в центре горизонтальной части П-образных проводников устанавливают узел в.ч. тока, как показано на фиг.4б. При этом площадь тока вдоль вертикальных сторон П-образных проводников максимальна и основная энергия излученного поля будет ориентирована вдоль поверхности земли. В то же время, на горизонтальных проводниках имеют место противофазные участки в.ч. токов, что существенно снижает уровень излучения в зенит.

При протекании в.ч. токов по горизонтальному участку П-образных проводников 1 в зазорах Δ между торцами ЭЭ 4 с некоторым коэффициентом трансформации Кт возбуждается ЭДС, под действием которой в.ч. ток растекается по металлической поверхности кузова ПО. Таким образом, эквивалентная схема заявленной антенны, показанная на фиг.3, представляет собой (в режиме ионосферных волн) эквивалентный симметричный вибратор с плечами длиной DА. Входное сопротивление ZА эквивалентного симметричного вибратора, образованного металлической поверхностью кузова ПО, с коэффициентом трансформации Кт подключено к выходу радиостанции, к которому также подключено комплексное сопротивление, образованное П-образными проводниками с подключенными к ним емкостными нагрузками БДРН 8, БНС 9 и индуктивностями Lв вертикальных частей П-образных проводников. В режиме ионосферных волн пучность тока устанавливают с помощью БДРН 8 в центре горизонтальной части П-образных проводников 1 у зазора Δ (фиг.4а). При переходе на другую рабочую частоту для сохранения пучности тока в зазоре между ЭЭ 4 необходимо изменить суммарное значение емкостной нагрузки, подключенной к выходу БДРН 8. В режиме поверхностной волны в центре горизонтальной части П-образных проводников 1 устанавливают узел тока (фиг.4б) подключением соответствующего суммарного значения емкостной нагрузки БДРН 8. При этом на вертикальных частях П-образных проводников направления протекания в.ч. токов совпадают, а на горизонтальных противоположны. При этом основная излучаемая энергия будет ориентирована под углами, близкими к горизонту.

В режимах ионосферной и поверхностной волн возможна работа как в движении, так и на остановках ПО.

Возможность достижения сформулированного технического результата проверялась путем сравнительной оценки эффективности заявленной антенны и прототипа с использованием метода масштабного моделирования.

Исходные значения элементов заявленной антенны для работы в диапазоне 3-20 МГц (λmax=100 м) приняты следующими: lв=1,9 м; lг=4,1 м; (2Lм+Lд)=4,5 м; Нп=0,6 м; d=0,06 м; tэ=0,03 м; Δ=0,06 м; lпр=0,8 м; lэ=0,72 м.

Сравнительные измерения уровней напряженности электрического поля излучения заявленной антенны EЗА, ∂Б и прототипа Eпр, ∂Б проводилась в дальней зоне излучения. На каждой частоте измерения контролировалось равенство мощности, подводимой к сравнимым антеннам. Результаты измерений, приведенные на фиг.6, показывают, что в диапазоне частот 3-20 МГц относительный выигрыш ΔЕ, ∂Б=EЗА, ∂Б - Eпр, ∂Б в режиме ионосферных волн составляет 1-3 ∂Б, а в режиме земных волн - 4-8, ∂Б. При равенстве подводимой к антеннам мощности увеличение уровня излученной мощности означает, что заявленная антенна имеет во столько же раз более высокий КПД. Измеренные характеристики направленности антенны в режиме ионосферных (фиг.5а) и поверхностных (фиг.5б) волн подтверждают возможность двухмодовой работы заявленной антенны как в движении, так и на остановках. Следовательно, подтверждается возможность достижения сформулированного технического результата при использовании заявленного устройства.

Похожие патенты RU2556446C1

название год авторы номер документа
БОРТОВАЯ ДЕКАМЕТРОВАЯ АНТЕННА ПОДВИЖНОГО ОБЪЕКТА 2012
  • Авдеев Алексей Романович
  • Лобов Сергей Александрович
  • Пестовский Игорь Николаевич
  • Пестовский Константин Игоревич
  • Соломин Сергей Николаевич
  • Титов Вячеслав Юрьевич
  • Чернолес Владимир Петрович
RU2484560C1
ПРОМЕЖУТОЧНЫЙ ВОЗБУДИТЕЛЬ КОРОТКОВОЛНОВОЙ АНТЕННЫ ПОДВИЖНОГО ОБЪЕКТА 2015
  • Авдеев Алексей Романович
  • Риконен Денис Юрьевич
  • Худайназаров Юрий Кахрамонович
  • Чернолес Владимир Петрович
RU2585918C1
ПРОМЕЖУТОЧНЫЙ ВОЗБУДИТЕЛЬ НЕВЫСТУПАЮЩЕЙ КОРОТКОВОЛНОВОЙ ПЕРЕДАЮЩЕЙ АНТЕННЫ ПОДВИЖНОГО ОБЪЕКТА 2015
  • Авдеев Алексей Романович
  • Худайназаров Юрий Кахрамонович
  • Чернолес Владимир Петрович
RU2593916C1
ПОЕЗДНАЯ МОДУЛЬНАЯ ПЕРЕДАЮЩАЯ ФАЗИРОВАННАЯ АНТЕННАЯ РЕШЕТКА 2017
  • Авдеев Алексей Романович
  • Малыгин Игорь Геннадьевич
  • Чернолес Владимир Петрович
RU2683592C1
МНОГОМОДОВАЯ МАЧТОВАЯ АНТЕННА 2006
  • Проценко Михаил Сергеевич
  • Самуйлов Игорь Николаевич
  • Чернолес Владимир Петрович
RU2313164C1
ДИАПАЗОННЫЙ СИММЕТРИЧНЫЙ ВИБРАТОР 2009
  • Риконен Денис Юрьевич
  • Самуйлов Игорь Николаевич
  • Хорольский Евгений Михайлович
  • Яшин Вениамин Иванович
RU2407117C1
ШИРОКОПОЛОСНАЯ АНТЕННА УЛЬТРАКОРОТКОВОЛНОВОГО ДИАПАЗОНА 2017
  • Авдеев Алексей Романович
  • Чернолес Александр Александрович
  • Поздняк Владислав Юрьевич
  • Худайназаров Юрий Кахрамонович
  • Чернолес Владимир Петрович
RU2646534C1
КОРОТКОВОЛНОВАЯ АНТЕННА 1978
  • Муравьев Ю.К.
  • Чернолес В.П.
  • Войсков С.В.
SU713461A1
АНТЕННА ЗЕНИТНОГО ПРИЕМА 1980
  • Грабек И.Б.
  • Воловик Ю.Т.
  • Жуков В.А.
  • Фитенко Н.Г.
  • Чернолес В.П.
SU1101122A1
КОНИЧЕСКИЙ НЕСИММЕТРИЧНЫЙ ВИБРАТОР 2010
  • Бородулин Роман Юрьевич
  • Львов Андрей Евгеньевич
  • Ульянов Сергей Александрович
RU2448395C1

Иллюстрации к изобретению RU 2 556 446 C1

Реферат патента 2015 года БОРТОВАЯ КОРОТКОВОЛНОВАЯ АНТЕННА ПОДВИЖНОГО ОБЪЕКТА

Изобретение относится к радиотехнике, а именно к антенной технике, и бортовая коротковолновая антенна (БКВА) подвижного объекта (ПО) может быть использована в качестве передающей ненаправленной антенны для работы как ионосферными, так и поверхностными волнами совместно с KB радиостанцией средней мощности, установленной на борту ПО. Техническим результатом при использовании БКВА является повышение ее КПД в режиме поверхностных волн и исключение демаскирующих признаков, указывающих на факт установки антенны на ПО. Для этого БКВА состоит из промежуточного возбудителя (ПрВ)1, выполненного из двух включенных параллельно П-образных проводников, установленных вертикально и параллельно боковым поверхностям ПО. Проекция периметра каждого П-образного проводника вписана в пределы площади боковой поверхности ПО. Средняя часть крышевой поверхности 3 ПО выполнена диэлектрической, а периферийные - металлическими. Над горизонтальной частью каждого П-образного проводника установлены экранирующие элементы (ЭЭ). Один конец ПрВ 1 подключен к блоку настройки и согласования 9, другой - к блоку дискретных реактивных нагрузок. Изменением распределения амплитуд тока вдоль ПрВ 1 обеспечивается диапазонная работа антенны как ионосферными, так и поверхностными волнами. Повышение КПД антенны достигается возбуждением корпуса ПО. 3 з.п. ф-лы, 6 ил.

Формула изобретения RU 2 556 446 C1

1. Бортовая коротковолновая антенна подвижного объекта (ПО), средняя треть металлической крышевой поверхности которого выполнена диэлектрической, содержащая промежуточный возбудитель с экранирующими элементами, подключенный одним концом к блоку дискретных реактивных нагрузок, а другим - к блоку настройки и согласования, вход которого подключен к выходу бортовой радиостанции, отличающаяся тем, что промежуточный возбудитель выполнен в виде двух параллельно включенных вертикальных П-образных проводников, установленных параллельно боковым металлизированным поверхностям ПО вне его экранированного внутреннего объема, над горизонтальной частью каждого П-образного проводника, расположенной в металлизированном подкрышевом пространстве ПО, установлены экранирующие элементы, каждый экранирующий элемент одним концом подключен к кромке металлической части крышевой поверхности, примыкающей к ее диэлектической части, причем между примыкающими друг к другу торцами экранирующих элементов в середине горизонтальной части каждого П-образного проводника установлен зазор Δ.

2. Бортовая коротковолновая антенна по п.1, отличающаяся тем, что экранирующие элементы выполнены в виде ленточных проводников.

3. Бортовая коротковолновая антенна по п.1, отличающаяся тем, что величина зазора Δ выбрана в пределах (0,9-1,5)d, где d - диаметр поперечного сечения П-образного проводника.

4. Бортовая коротковолновая антенна по п.1, отличающаяся тем, что расстояние tэ между поверхностью экранирующего элемента и поверхностью П-образного проводника выбрано в пределах tэ=(2-4)·10-4 λmax, где λmax - максимальная длина волны рабочего диапазона волн.

Документы, цитированные в отчете о поиске Патент 2015 года RU2556446C1

БОРТОВАЯ ДЕКАМЕТРОВАЯ АНТЕННА ПОДВИЖНОГО ОБЪЕКТА 2012
  • Авдеев Алексей Романович
  • Лобов Сергей Александрович
  • Пестовский Игорь Николаевич
  • Пестовский Константин Игоревич
  • Соломин Сергей Николаевич
  • Титов Вячеслав Юрьевич
  • Чернолес Владимир Петрович
RU2484560C1
RU 2071158 C1, 27.12.1996
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
Многоступенчатая активно-реактивная турбина 1924
  • Ф. Лезель
SU2013A1
US 6034640 A1, 07.03.2000

RU 2 556 446 C1

Авторы

Авдеев Алексей Романович

Пестовский Игорь Николаевич

Петренко Михаил Игоревич

Чернолес Владимир Петрович

Даты

2015-07-10Публикация

2013-12-24Подача