Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др.
Известны способы измерения уровня жидкостей в различных емкостях, при которых определяют уровень жидкости в емкости с применением датчиков в виде отрезков линий передачи электромагнитных волн - отрезков длинных линий, полых волноводов, волноводных резонаторов, располагаемых в емкостях с контролируемыми жидкостями (Викторов В.А., Лункин Б.В., Совлуков А.С. Высокочастотный метод измерения неэлектрических величин. М.: Наука. 1980. 280 с.). При измерении уровня диэлектрических жидкостей диапазон изменения информативного параметра, в частности, резонансной частоты электромагнитных колебаний резонатора в виде отрезка длинной линии или отрезка полого волновода (волноводного резонатора) оказывается малым, что затрудняет проведение измерений с необходимыми высокими значениями чувствительности датчиков уровня и точности измерений уровня. Это характерно для измерений уровня жидкостей с малым значением диэлектрической проницаемости, в частности, для криогенных жидкостей (жидкого кислорода, водорода, гелия и др.).
Известно также техническое решение (Викторов В.А., Лункин Б.В., Совлуков А.С. Радиоволновые измерения параметров технологических процессов. М.: Энергоатомиздат. 1989. 208 с. С. 86-90), которое по технической сущности наиболее близко к предлагаемому способу и принято в качестве прототипа. Этот способ-прототип заключается возбуждении электромагнитных колебаний в металлическом полом волноводном резонаторе, размещаемом вертикально в емкости с контролируемой диэлектрической жидкостью. Уровень жидкости в емкости соответствует ее уровню в частично-заполненном волноводном резонаторе. Измеряя резонансную (собственную) частоту электромагнитных колебаний резонатора, можно определить уровень диэлектрической жидкости, заполняющей полость этого резонатора. Однако для жидкостей с малым значением диэлектрический проницаемости (менее 2) диапазон изменения резонансной частоты и, соответственно, чувствительность уровнемера с чувствительным элементом в виде такого волноводного резонатора является малой величиной, что затрудняет проведение измерений уровня с высокой точностью.
Техническим результатом настоящего изобретения является увеличение чувствительности и, как следствие, точности измерения уровня вещества.
Технический результат достигается тем, что в предлагаемом способе измерения уровня вещества в емкости, при котором размещают в емкости объемный резонатор, уровень вещества в котором равен его уровню в емкости, возбуждают в объемном резонаторе электромагнитные колебания и измеряют их резонансную частоту, в полости резонатора размещают вещество с хотя бы одним частотно-зависимым электрофизическим параметром, частотный диапазон изменения которого выбирают в пределах изменения резонансной частоты резонатора, которое имеет место при заполнении полости резонатора контролируемым веществом. В качестве вещества с хотя бы одним частотно-зависимым электрофизическим параметром используют воду, заключенную в герметичную кювету, размещаемую в полости резонатора у его верхнего торца, а в качестве электрофизического параметра воды - ее диэлектрическую проницаемость.
Способ поясняется чертежами.
На фиг. 1 - полость объемного резонатора с контролируемым веществом и вещество с хотя бы одним частотно-зависимым электрофизическим параметром.
На фиг. 2 - схема измерительного устройства для реализации способа измерения.
На фиг. 3 - график зависимости диэлектрической проницаемости воды от частоты в широком диапазоне ее изменения.
На фиг. 4 и фиг. 5 - графики зависимости резонансной (собственной) частоты f электромагнитных колебаний волноводного резонатора от уровня х, соответственно, диэлектрическим и электропроводным веществами.
Здесь показаны объемный резонатор 1, контролируемое вещество 2, вещество 3 с хотя бы одним частотно-зависимым электрофизическим параметром, элемент связи 4, генератор электромагнитных колебаний 5, элемент связи 6, регистратор 7.
Способ реализуется следующим образом.
В устройстве (фиг. 1) для реализации данного способа измерения в объемном резонаторе 1 с контролируемым веществом 2, уровень x которого подлежит измерению, возбуждают электромагнитные колебания на одном из выбранных, в частности основном (низшем), типе электромагнитных колебаний и измеряют их резонансную частоту f .Способы возбуждения в резонаторах электромагнитных колебаний различных типов, их выделения и измерения характеристик известны (Лебедев И.В. Техника и приборы СВЧ. Т. 1. М.: Высшая школа. 1970. 440 с. С. 337-369).
Согласно данному способу в полости объемного резонатора, в частности волноводного резонатора, размещают вещество 3 с хотя бы одним зависящим от частоты f (т.е. обладающим частотной дисперсией) электрофизическим параметром - диэлектрической проницаемостью ε(f) или (и) тангенсом угла диэлектрических потерь tgδ(f) (электропроводностью σ(f)) - диапазон изменения которого выбирают в пределах изменения резонансной частоты резонатора, которое имеет место при заполнении полости резонатора контролируемым веществом.
На фиг. 2 приведена схема измерительного устройства для реализации данного способа измерения, где в качестве объемного резонатора 1 применен волноводный резонатор, размещаемый вертикально в емкости с контролируемым веществом 2. При этом уровень вещества в емкости соответствует его значению в волноводном резонаторе.
Возбуждение электромагнитных колебаний осуществляют с помощью элемента связи 4 от генератора электромагнитных колебаний 5. Прием электромагнитных колебаний осуществляют с помощью элемента связи 6, подсоединенного с помощью линии связи к регистратору 7, служащему для определения резонансной частоты объемного резонатора 1 и, следовательно, уровня вещества 2 в емкости.
В качестве вещества 3 с хотя бы одним электрофизическим параметром, зависящим от частоты f, можно использовать, в частности, воду, заключенную в герметичную кювету, размещаемую внутри объемного резонатора, например, у его верхнего торца (фиг. 2), а в качестве электрофизического параметра воды - ее диэлектрическую проницаемость εв(f) или тангенс угла диэлектрических потерь tgδв(f). На фиг.3 приведен график зависимости εв(f) в широком диапазоне частот, включая частоты (10-30 ГГц) СВЧ-диапазона, где имеет место выраженная зависимость εв от частоты (Бензарь В.К. Техника СВЧ влагометрии. Минск: Вышэйшая школа. 1974. 349 с.).
Это приводит, как результат, к увеличению диапазона изменения резонансной (собственной) частоты f резонатора при изменении уровня х в пределах того же диапазона, в частности, от его нулевого значения (жидкость отсутствует) до максимального значения l (полное заполнение) в полости резонатора (и емкости, содержащей вещество). Это обусловлено перераспределением энергии электромагнитного поля стоячей волны в объеме резонатора при изменении уровня вещества в его полости и при наличии частотно-зависимого вещества в этом электромагнитном поле.
Выбирая параметры конструкции резонатора так, что его начальная собственная частота f0 электромагнитных колебаний находится в СВЧ-диапазоне частот, например, в пределах 10-30 ГГц, т.е. в области наличия у воды частотной дисперсии (фиг. 3), можно управлять чувствительностью Sx=df/dx такого резонаторного датчика уровня х вещества.
Рассмотрим, для примера, изменение f как функции измеряемого уровня х, так и диэлектрической проницаемости εв(f) воды (при этом наличие зависимости tgδв(f) у воды приводит к некоторому уменьшению добротности объемного резонатора, не мешая существенно возможности измерения его резонансной частоты f). Здесь действуют два механизма изменения резонансной частоты: 1) вследствие наличия контролируемого вещества в полости резонатора; 2) вследствие наличия вещества с частотной дисперсией диэлектрической проницаемости воды, также изменяющего значение резонансной частоты f при изменении уровня х. При этом, как показывает рассмотрение действия этих механизмов, они влияют на f(x) в одном направлении: при изменении уровня х как диэлектрического вещества (фиг. 4), так и электропроводного вещества (фиг. 5) соответствующее изменение резонансной частоты f(x) увеличивается. За счет этого зависимость f(x) при заполнении данного резонатора диэлектрическим веществом характеризуется большей чувствительностью Sx=df/dx (см. фиг. 4, кривая 2), чем той, которая имеет место в отсутствие кюветы с водой в полости резонатора (фиг. 4, кривая 1). Увеличение чувствительности Sx происходит и при заполнении резонатора электропроводным веществом (фиг. 5, кривая 2) по сравнению с ее величиной в случае датчика в виде полого резонатора (фиг. 5, кривая 1).
Определим аналитически чувствительность резонаторного датчика уровня, содержащего вещество с частотной дисперсией εв (воду) в полости резонатора, на примере заполнения полости объемного волноводного резонатора, размещенного вертикально в емкости, диэлектрической жидкостью. При этом: V0=Al, V=Ax, где V и V0 - объем, соответственно всей полости резонатора и ее части, заполненной до уровня х; l - максимальное значение уровня х, соответствующее полному заполнению объема V0; A -площадь поперечного сечения полости волноводного резонатора. В данном случае имеем: чувствительность Sv=df/dV=(1/A)·(df/dx)=(1/A)·Sx.
Поскольку при заполнении объемного резонатора диэлектрическим веществом с ε=ε(V) справедливо соотношение (Никольский В.В. Вариационные методы для внутренних задач электродинамики. М.: Наука. 1967. 460 с.)
где f0 - значение f при V=0, то в данном случае будем иметь
где εв, Vв - соответственно, диэлектрическая проницаемость воды и занимаемый ею объем.
В нулевом приближении теории возмущений
где обозначено:
С учетом (3) находим и отсюда чувствительность S датчика в результате следующих преобразований:
В отсутствие же дисперсионного элемента (Vв=0) чувствительность Sv0 датчика есть
Тогда с учетом (4) и (5) получим после преобразований:
Поскольку можно считать φ(Vв)<<1, то
Отсюда видно, что, так как
При V≈V0 получаем
При равномерном распределении энергии поля вдоль волновода (Е0=const, φ(V)=V/V0, φ(Vв)=Vв/V0 и, следовательно,
где l - длина резонатора, хв - высота слоя воды в кювете, имеющей то же поперечное сечение, что и резонатор;
при V≈V0
Отсюда видно, что увеличение чувствительности резко возрастает с уменьшением ε, то есть такой путь целесообразно использовать для ε<2 (нефтепродукты, криогенные жидкости и др.).
Величина
Таким образом, за счет размещения в полости объемного резонатора вещества с хотя бы одним частотно-зависимым электрофизическим параметром и связанного с этим перераспределением энергии электромагнитного поля стоячей волны в объеме резонатора обеспечивается увеличение диапазона изменения резонансной частоты в том же диапазоне изменения уровня жидкости, повышение чувствительности и, как следствие этого, повышение точности его измерения.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ В ЕМКОСТИ | 2022 |
|
RU2799733C1 |
СПОСОБ ИЗМЕРЕНИЯ УРОВНЯ ВЕЩЕСТВА В ЕМКОСТИ | 2017 |
|
RU2671936C1 |
Способ измерения уровня диэлектрической жидкости в емкости | 2021 |
|
RU2775643C1 |
СПОСОБ ИЗМЕРЕНИЯ ФИЗИЧЕСКОЙ ВЕЛИЧИНЫ | 2011 |
|
RU2473889C1 |
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА ВЕЩЕСТВА В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ | 2016 |
|
RU2645435C1 |
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ В ЕМКОСТИ | 2011 |
|
RU2473052C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СМЕСИ ВЕЩЕСТВ | 1999 |
|
RU2164021C2 |
СПОСОБ ИЗМЕРЕНИЯ КОЛИЧЕСТВА ДИЭЛЕКТРИЧЕСКОЙ ЖИДКОСТИ В МЕТАЛЛИЧЕСКОЙ ЕМКОСТИ | 2014 |
|
RU2567446C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СМЕСИ ВЕЩЕСТВ | 2013 |
|
RU2536164C1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ КОНЦЕНТРАЦИИ СМЕСИ ВЕЩЕСТВ | 2010 |
|
RU2426099C1 |
Изобретение относится к измерительной технике и может быть использовано для высокоточного измерения уровня вещества (жидкости, сыпучего вещества), находящегося в какой-либо емкости. В частности, оно может быть применено для измерения уровня нефтепродуктов, сжиженных газов и др. Техническим результатом настоящего изобретения является увеличение чувствительности и, как следствие, точности измерений. Технический результат достигается тем, что в предлагаемом способе измерения уровня вещества в емкости, при котором размещают в емкости объемный резонатор, уровень вещества в котором равен его уровню в емкости, возбуждают в объемном резонаторе электромагнитные колебания и измеряют их резонансную частоту, в полости резонатора размещают вещество с хотя бы одним частотно-зависимым электрофизическим параметром, частотный диапазон изменения которого выбирают в пределах изменения резонансной частоты резонатора, которое имеет место при заполнении полости резонатора контролируемым веществом. В качестве вещества с хотя бы одним частотно-зависимым электрофизическим параметром используют воду, заключенную в герметичную кювету, размещаемую в полости резонатора у его верхнего торца, а в качестве электрофизического параметра воды - ее диэлектрическую проницаемость. 1 з.п. ф-лы, 5 ил.
1. Способ измерения уровня вещества в емкости, при котором размещают в емкости объемный резонатор, уровень вещества в котором равен его уровню в емкости, возбуждают в объемном резонаторе электромагнитные колебания и измеряют их резонансную частоту, отличающийся тем, что в полости резонатора размещают вещество с хотя бы одним частотно-зависимым электрофизическим параметром, частотный диапазон изменения которого выбирают в пределах изменения резонансной частоты резонатора, которое имеет место при заполнении полости резонатора контролируемым веществом.
2. Способ по п. 1, отличающийся тем, что в качестве вещества с хотя бы одним частотно-зависимым электрофизическим параметром используют воду, заключенную в герметичную кювету, размещаемую в полости резонатора у его верхнего торца, а в качестве электрофизического параметра воды - ее диэлектрическую проницаемость.
УСТРОЙСТВО ДЛЯ ИЗМЕРЕНИЯ УРОВНЯ ЖИДКОСТИ | 2010 |
|
RU2426076C1 |
JP 7280627 A 27.10.1995 | |||
WO 1995027895 A1 19.10.1995 | |||
Устройство для измерения уровня диэлектрической жидкости | 1991 |
|
SU1760355A1 |
Вибрационный уровнемер жидкости | 1982 |
|
SU1099107A1 |
УСТРОЙСТВО ДЛЯ ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ И ПОВЕРХНОСТНОГО НАТЯЖЕНИЯ ЖИДКОСТИ | 1999 |
|
RU2171978C2 |
Авторы
Даты
2015-08-10—Публикация
2014-05-23—Подача