СПОСОБ МОДЕЛИРОВАНИЯ И ОЦЕНКИ АКТИВНОГО ОБЪЕМА ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ВОДОНОСНЫХ ТРЕЩИНОВАТО-ПОРОВЫХ СТРУКТУРАХ Российский патент 2015 года по МПК E21B49/00 G01N15/08 

Описание патента на изобретение RU2558838C1

Изобретение относится к газовой промышленности и может быть использовано для моделирования, проектирования подземных хранилищ газа (ПХГ) в водоносных структурах пласта коллектора и оценки активного объема ПΧΓ.

Известен способ моделирования пластово-флюидальной системы разрабатываемого месторождения (см. Патент RU 2468203 C1, опубл. 27.11.2012, МПК E21B 49/00, G01N 15/08). Способ включает в себя отбор образцов породы, экстракцию, высушивание и насыщение газоконденсатной смесью образцов, моделирование процесса выпадения конденсата в образцах. При этом из упомянутых образцов формируют имитатор породы пласта (ИПП) в виде насыпной модели с типичными для разрабатываемого месторождения значениями пористости и проницаемости и приготавливают рекомбинированную пробу пластового газа, включающую связанную воду, связанную нефть, сырой газ и газ сепарации. Создают в ИПП начальную водонасыщенность, заполняют часть порового пространства ИПП буферным газом, после чего замещают буферный газ углеводородной составляющей рекомбинированной пробы до тех пор, пока в ИПП не будет закачано такое количество связанной нефти, которое соответствует содержанию связанной нефти в поровом пространстве разрабатываемого месторождения.

Недостатком известного способа является то, что он не может быть использован при изучении проблем моделирования, проектирования, технологических расчетов подземных хранилищ газа (ПХГ) в водоносных структурах и оценки активного объема ПХГ. Для корректного лабораторного определения технологических параметров проектируемого ПХГ в водоносной трещиновато-поровой структуре, таких, например, как активный объем Vак, фазовые проницаемости структуры по газу и воде, необходимо обеспечить как одноразовую, так и циклическую закачку газа в модель пласта коллектора, а также моделировать поведение флюидальной системы при отборе газа.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является создание способа моделирования и оценки активного объема ПХГ в водоносных трещиновато-поровых структурах, адекватно отражающего поведение натурного пласта-коллектора проектируемого ПХГ.

Данный технический результат достигается за счет того, что способ моделирования и оценки активного объема подземного хранилища газа в водоносных трещиновато-поровых структурах включает в себя отбор представительных образцов породы, имеющих типичные для подземного хранилища газа значения пористости и проницаемости, формирование имитатора породы пласта путем последовательного размещения представительных образцов породы в кернодержателе, подключение на вход имитатора породы пласта прецизионных насосов для закачки воды и газа, заполнение имитатора породы пласта водой и газом в объемах, соответствующих значениям начальной газо- и водонасыщенности подземного хранилища газа, определение открытого объема порового пространства имитатора породы пласта по объему закачанных в имитатор породы пласта воды и газа, установление пластовой температуры, создание в имитаторе породы пласта давления обжима и пластового давления, соответствующих значениям горного и пластового давлений подземного хранилища газа, и закрытие выхода имитатора породы пласта, последующую закачку газа на вход в имитатор породы пласта с помощью прецизионного насоса, достигая максимального для подземного хранилища газа значения пластового давления, имитацию отбора газа путем выпуска газа со входа имитатора породы пласта, достигая минимального для подземного хранилища газа значения пластового давления с регистрацией объема вышедшего газа и воды, определение активного газового объема имитатора породы пласта по разнице объемов газа и воды, вышедших из имитатора породы пласта, с последующим определением активного газового объема подземного хранилища газа, который определяют как произведение открытого объема порового пространства подземного хранилища газа на частное от деления активного газового объема имитатора породы пласта и открытого объема порового пространства имитатора породы пласта.

К выходу имитатора породы пласта может быть подключен гидродинамический демпфер, имитирующий сжатие или восстановление водоносной структуры при закачке или отборе газа.

Гидродинамический демпфер может состоять из гидравлического аккумулятора, вход которого подключен к выходу имитатора породы пласта, и калиброванного насоса, подсоединенного к выходу гидравлического аккумулятора, который может представлять собой сосуд высокого давления, разделенный на две части плавающим поршнем, причем первая часть сосуда заполнена водой и подключена к выходу имитатора породы пласта, а вторая часть заполнена гидравлической жидкостью и подключена к калиброванному насосу.

Гидродинамический демпфер может состоять из калиброванного насоса, заполненного водой. При увеличении давления до максимального значения пластового давления для подземного хранилища газа может быть увеличен также и объем гидродинамического демпфера на величину ΔV, обеспечивающую максимальное контактирование закачиваемого газа с поровой структурой имитатора породы пласта, а при снижении давления до минимального значения пластового давления для подземного хранилища газа уменьшают объем гидродинамического демпфера на упомянутую величину ΔV. При этом величину ΔV выбирают таким образом, чтобы при закачке газа в имитатор породы пласта газ заполнял только поровое пространство имитатора породы пласта и не поступал в гидродинамический демпфер.

Закачку газа и имитацию отбора газа могут осуществлять циклически.

Сущность предлагаемого изобретения поясняется на Фиг. 1-3, где на Фиг. 1 представлена схема установки для проведения экспериментов по одноразовой и циклической закачке/отбору газа в водоносных структурах, на Фиг. 2 показаны результаты лабораторных экспериментов по измерению активного объема имитатора породы пласта (ИПП) при закачке/отборе газа, а на Фиг. 3 приведены результаты эксперимента по вытеснению воды газом из ИПП, проведенного при пластовых условиях с целью выбора оптимального объема ΔV гидродинамического демпфера при функционировании предлагаемого способа.

На Фиг. 1 показаны: 1 - имитатор породы пласта, сформированный из представительных образцов породы, имеющих типичные для ПХГ значения пористости и проницаемости, выстроенных в последовательность и помещенных в кернодержатель; 2, 3 - прецизионные насосы для закачки воды и газа соответственно; 4 - датчик температуры; 5-9 - датчики давления; 10 - пресс давления обжима для обеспечения давления обжима ИПП; 11 - трехходовой регулирующий клапан; 12 - гидравлический аккумулятор; 13 - калиброванный насос; 14-18 - запорные вентили; 19 - управляемый регулятор давления; 20 - управляющий насос; 21 - первый сепаратор; 22 - счетчик газа; 23 - регулятор давления; 24 - второй сепаратор; 25 - гидродинамический демпфер.

Насосы 2,3 подают на вход ИПП воду и газ, обеспечивая создание начальных значений газо- и водонасыщенностей ИПП 1 при пластовом давлении Pпл, контролируемом датчиками давления 5 и 6 соответственно. Температуру ИПП 1 измеряют датчиком температуры 4, а давление обжима ИПП обеспечивают прессом давления обжима 10, подключенного через запорный вентиль 18 к внешней поверхности ИПП 1, и контролируют датчиком давления 8. К выходу ИПП 1 через трехходовой регулирующий клапан 11 подключен гидродинамический демпфер 25. Гидродинамический демпфер 25 представляет собой гидравлический аккумулятор 12, соединенный через запорный вентиль 16 с калиброванным насосом 13. Трехходовой регулирующий клапан 11 обеспечивает три режима работы: а) полное закрытие выхода ИПП 1; б) подключение выхода ИПП 1 только к гидродинамическому демпферу; в) подключение ИПП 1 только к регулятору давления 23 при обеспечении фильтрации через модель пласта и при последующем измерении профильтрованного количества воды и газа на втором сепараторе 24. На вход ИПП 1 через запорный вентиль 17 также подключен управляемый посредством управляющего насоса 20 регулятор давления 19, осуществляющий плавный выпуск газа из ИПП 1. Первый сепаратор 21 и счетчик газа 22 измеряют объем вышедших из модели газа Vг и воды Vв.

Предлагаемый способ реализуется следующим образом. Отбирают представительные образцы породы. Формируют ИПП 1 путем последовательного размещения представительных образцов породы в кернодержателе. Имитатор породы пласта ИПП 1 формируют, как правило, из образцов цилиндрической формы кернового материала водоносной структуры. Образцы керна укладывают в кернодержатель, причем образцы с большей проницаемостью располагают на входе ИПП 1. Вместе с тем иногда из-за отсутствия кернового материала соответствующей водоносной структуры для оценки активного объема ПХГ удобно использовать насыпную модель - имитатор породы пласта. В этом случае кернодержатель наполняют смесью речного песка и маршалита в пропорции, соответствующей составу кернового материала водоносной структуры, и уплотняют до получения необходимых значений пористости и проницаемости проектируемого ПХГ.

Определяют величину открытого порового пространства ИПП 1. Для этого ИПП 1 вакуумируется, а затем заполняется водой и газом. Тогда объем воды и газа, вошедшего в вакуумированный ИПП 1, и будет представлять искомую величину открытого порового пространства.

Создают в ИПП 1 давление обжима Pоб, пластовое давление Pпл и пластовую температуру tпл, которые соответствуют термобарическим условиям моделируемого ПХГ.

ИПП предполагает возможность создания как температуры tпл, так и давления обжима Pоб и пластового давления Pпл за счет специальной конструкции кернодержателя: выстроенные в последовательность представительные образцы породы помещаются в резиновую муфту (на фиг. не показана), которая затем размещается в полости металлического стакана (на фиг. не показан), образуя в нем внутреннюю цилиндрическую концентрическую поверхность и герметичное пространство. Тогда давление обжима Pоб легко создать нагнетанием, например, масла с помощью пресса давления обжима 10 в боковой зазор, образуемый внутренней боковой поверхностью стакана и поверхностью резиновой муфты. Пластовое давление Pпл создают нагнетанием воды или газа с помощью насосов 2 и 3 через торцевую поверхность резиновой муфты с помещенными в нее представительными образцами породы. Пластовая температура tпл обеспечивается, например, циркуляцией масла необходимой температуры в боковом зазоре ИПП 1 с помощью насоса 10. Нагнетая при Pпл через торцевую поверхность резиновой муфты последовательно воду, а затем газ, добиваются (по балансу входящих и выходящих потоков воды и газа) необходимых значений начальной водо- и газонасыщенностей, характерных для водоносных структур проектируемого ПХГ.

Далее закрывают выход ИПП 1 с помощью трехходового регулирующего клапана 11 (режим работы (а)), а также запорные вентили 14 и 17. На вход ИПП 1 прецизионным насосом 3 через открытый запорный вентиль 15 нагнетают газ. При этом пластовое давление Pпл увеличивается до величины давления Pмакс. Давление Pмакс является технологическим параметром ПХГ и выбирается в результате тщательного анализа геологической информации и особенностей строения пласта коллектора. Нагнетаемый газ оттесняет содержащуюся в ИПП 1 воду к выходу модели пласта. При достижении давления Pмакс запорный вентиль 15 закрывают и таким образом имитируют период хранения газа в ПХГ.

Далее имитируют процесс отбора газа: запорный вентиль 17 открывают и со входа ИПП 1 происходит сбрасывание газа через управляемый регулятор давления 19 в первый сепаратор 21 и счетчик газа 22. Управляющий насос 20 обеспечивает необходимый темп сбрасывания газа до Pмин, подавая опорное давление на управляемый регулятор давления 19. Давление Pмин является технологическим параметром ПХГ и выбирается в результате тщательного анализа геологической информации и особенностей строения пласта коллектора. Темп сбрасывания газа задается из соразмерности натурных и модельных периодов закачки/хранения/отбора газа. Объем газа Vг, вышедшего в процессе сбрасывания давления, измеряют с помощью первого счетчика газа 22 и затем приводят к пластовым условиям, а объем воды Vв, вышедшей из модели пласта в процессе сбрасывания давления, измеряют на первом сепараторе 21, затем приводят к пластовым условиям.

Определяют активный газовый объем имитатора породы пласта Vак. по разнице объемов газа и воды, вышедших из имитатора породы пласта.

Далее определяют активный газовый объем подземного хранилища газа Vак.пхг, который определяют как произведение открытого порового пространства подземного хранилища газа на частное от деления активного газового объема имитатора породы пласта и открытого порового пространства имитатора породы пласта:

Так как объем порового пространства модели пласта коллектора Vпор измерен в начале эксперимента, а объем порового пространства ПХГ Vпор.пхг обычно известен из анализа фильтрационно-емкостных свойств и геологической информации структуры ПХГ, то, зная активный объем модели пласта Vак. и используя выражение (2), определяют активный объем проектируемого подземного хранилища газа Vак.пхг.

Для повышения точности определения Vг (см. выражение (1)) и обеспечения оптимального контактирования закачиваемого газа с водоносной поровой структурой к выходу имитатора породы пласта подключают гидродинамический демпфер, имитирующий сжатие или восстановление водоносной структуры при закачке или отборе газа. Гидродинамический демпфер (ГД) 25 может представлять собой гидравлический аккумулятор 12: сосуд для определения свойств жидкости при различных давлениях, объемах и температуре (сосуд PVT), разделенный плавающим поршнем на две части, причем первая часть заполняется водой и подключается через клапан 11 к выходу ИПП 1, а вторая часть заполняется любой гидравлической жидкостью (маслом, керосином, этиленгликолем и т.д.). Вторая часть гидравлического аккумулятора может быть нагружена также и на калиброванный насос 13 через запорный вентиль 16.

Как предпочтительный вариант, ГД может представлять собой калиброванный насос 13, заполненный водой и подключенный через клапан 11 к выходу ИПП 1. В этом случае при закачке газа в ИПП 1 через вентиль 15 и подъеме давления до Pмах одновременно увеличивается объем ГД на величину ΔV, причем величину ΔV выбирают таким образом, чтобы при закачке газа в имитатор породы пласта газ заполнял только поровое пространство имитатора породы пласта и не поступал в гидродинамический демпфер. При сбросе давления до величины Pмин (при открытом вентиле 17) калиброванный насос 13 уменьшает объем ГД на ту же величину ΔV. Таким образом, обеспечивается максимальное взаимодействие пористой среды ИПП с закачиваемым газом и оптимально моделируются натурные условия закачки/отбора газа при функционировании ПХГ.

Величину ΔV выбирают из соображений реального моделирования поведения водоносной системы, на базе которой проектируется ПХГ: газ при закачке должен контактировать с пористой средой ИПП 1 как можно в большем объеме модели. Для правильного выбора величины ΔV используют эксперимент по вытеснению воды, содержащейся изначально в ИПП 1, газом. В этом случае запорные вентили 14, 17 закрывают, а запорный вентиль 15 открывают. К выходу ИПП 1 через трехходовой регулирующий клапан 11 подключают только регулятор давления 23, а гидродинамический демпфер 25 отключают. Газ с помощью прецизионного насоса 3 через вентиль 15 подают в ИПП 1 при пластовом давлении Pпл, который вытесняет часть содержащейся там воды. Вода после регулятора давления 23 поступает во второй сепаратор 24, в котором измеряют объем воды вытесненный газом Vвыт. Тогда величина технологического параметра ΔV выбирается из условия:

Например, величина ΔV может быть равной ½ Vвыт, что обеспечивает максимальное заполнение пористой среды ИПП 1 закачиваемым газом.

На Фиг. 2 показана кривая увеличения объема воды, вытесненной из ИПП 1 при закачке метана. Модель пласта коллектора имеет следующие параметры: длина - 42 см, поровый объем - 11 см3. Фильтрация метана осуществлялась при пластовом давлении Pпл=25 МПа; давлении обжима (горное давление) - Pоб=56 МПа и пластовой температуре tпл=110°C. Из Фиг. 2 видно, что при длительной закачке метана из модели пласта коллектора можно вытеснить порядка 0,175 поровых объемов воды, то есть при Vпор=11 см3 вытесненный из модели объем воды будет равен Vвыт ≈1,93 см3. Таким образом, величина ΔV может быть выбрана порядка 1 см3.

Величина размаха давления ΔP при закачке/отборе газа обычно задается технологическим расчетом, исходя из планируемых технологических параметров ПХГ, тщательного анализа геологической информации и особенностей строения пласта.

В реальных условиях эксплуатации ПХГ закачка и отбор газа производятся многократно (циклически). В этом случае при циклической закачке/отборе газа величина активно объема Vак может изменяться. Предлагаемый способ позволяет смоделировать процесс циклической закачки/отбора газа и оценить динамику изменения активного объема Vак.

На Фиг. 3 показана динамика изменения активного объема Vак, пронормированного на поровый объем ИПП, от номера цикла закачки/отбора газа. В модели пласта коллектора длиной 42 см и с поровым объемом 11 см3 создавались пластовые условия: Pпл=25 МПа; Pоб=56 МПа; tпл=110°C. Затем осуществлялась циклическая закачка/отбор метана. После каждого цикла оценивался активный объем модели пласта коллектора Vак. Всего произведено 5 циклов закачки/отбора (точки на Фиг. 3). Экспериментальная сплошная линия экстраполирована на 15 циклов закачки/отбора (штриховая линия). Из Фиг. 3 видно, что активный объем Vак резко возрастает при первых циклах закачки/отбора метана, а начиная с 4 цикла темп возрастания активного объема уменьшается, а сам активный объем Vак, нормированный на поровый объем модели, стремится к предельной величине порядка 0,4.

Предлагаемый способ позволяет моделировать и оценивать активный объем ПХГ в водоносных трещиновато-поровых структурах, адекватно отражающий поведение натурного пласта-коллектора проектируемого ПХГ.

Похожие патенты RU2558838C1

название год авторы номер документа
Способ создания подземного хранилища газа в водоносном пласте-коллекторе 2023
  • Каримов Марат Фазылович
  • Муллагалиева Ляля Махмутовна
  • Ибрагимов Руслан Рустемович
  • Хан Сергей Александрович
  • Сафонов Игорь Антонович
  • Костиков Сергей Леонидович
  • Никитин Роман Сергеевич
  • Кошелев Дмитрий Александрович
  • Позднухов Сергей Владимирович
  • Таргонский Владимир Юрьевич
  • Смаков Ильдар Салаватович
  • Панкратов Андрей Валерьевич
RU2818282C1
СПОСОБ СОЗДАНИЯ И ЭКСПЛУАТАЦИИ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА 2012
  • Акулинчев Борис Павлович
  • Абукова Лейла Азретовна
  • Тупысев Михаил Константинович
RU2514339C1
СПОСОБ ЭКСПЛУАТАЦИИ ПОДЗЕМНОГО ХРАНИЛИЩА ПРИРОДНОГО ГАЗА 2012
  • Дмитриевский Анатолий Николаевич
  • Аксютин Олег Евгеньевич
  • Исаева Наталья Александровна
  • Максимов Вячеслав Михайлович
  • Михайловский Александр Артемович
  • Семигласов Дмитрий Юрьевич
  • Тупысев Михаил Константинович
  • Хан Сергей Александрович
RU2532278C2
Способ создания подземного хранилища газа в водоносной геологической структуре 2017
  • Каримов Марат Фазылович
  • Хан Сергей Александрович
  • Дудникова Юлия Константиновна
  • Алабердин Ренат Рифатович
  • Костиков Сергей Леонидович
  • Мелков Александр Сергеевич
  • Муллагалиева Ляля Махмутовна
RU2697798C2
СПОСОБ СОЗДАНИЯ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ВОДОНОСНОЙ ГЕОЛОГИЧЕСКОЙ СТРУКТУРЕ 2015
  • Каримов Марат Фазылович
  • Латыпов Айрат Гиздеевич
  • Муллагалиева Ляля Махмутовна
  • Аглиуллин Марс Хасанович
  • Исламова Асия Асхатовна
  • Хан Сергей Александрович
  • Костиков Сергей Леонидович
  • Тернюк Игорь Михайлович
  • Дудникова Юлия Константиновна
RU2588500C1
СПОСОБ ЭКСПЛУАТАЦИИ МНОГОПЛАСТОВОГО ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА 2017
  • Лихушин Александр Михайлович
  • Чугунов Андрей Владиленович
  • Ковалевская Ольга Александровна
  • Литвинов Андрей Витольдович
RU2655259C1
Способ создания подземного хранилища газа в нефтяном месторождении 1988
  • Митрофанова Татьяна Николаевна
SU1569291A1
Способ создания подземного хранилища газ в водоносной геологической структуре 2021
  • Каримов Марат Фазылович
  • Муллагалиева Ляля Махмутовна
  • Хан Сергей Александрович
  • Костиков Сергей Леонидович
  • Алабердин Ренат Рифатович
RU2771966C1
Способ создания и эксплуатации подземного хранилища газа в водоносной геологической структуре 2021
  • Каримов Марат Фазылович
  • Хан Сергей Александрович
  • Костиков Сергей Леонидович
  • Сафонов Игорь Александрович
  • Никитин Роман Сергеевич
  • Муллагалиева Ляля Махмутовна
  • Кошелев Дмитрий Александрович
  • Позднухов Сергей Владимирович
  • Богомазова Александра Геннадьевна
  • Панкратов Андрей Валерьевич
RU2770028C1
СПОСОБ СОЗДАНИЯ ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ГЕОЛОГИЧЕСКИХ СТРУКТУРАХ, ЗАПОЛНЕННЫХ ГАЗОМ 2011
  • Дмитриевский Анатолий Николаевич
RU2458838C1

Иллюстрации к изобретению RU 2 558 838 C1

Реферат патента 2015 года СПОСОБ МОДЕЛИРОВАНИЯ И ОЦЕНКИ АКТИВНОГО ОБЪЕМА ПОДЗЕМНОГО ХРАНИЛИЩА ГАЗА В ВОДОНОСНЫХ ТРЕЩИНОВАТО-ПОРОВЫХ СТРУКТУРАХ

Изобретение относится к газовой промышленности и может быть использовано для моделирования, проектирования подземных хранилищ газа (ПХГ) в водоносных структурах пласта коллектора и оценки активного объема ПХГ. Способ включает в себя отбор представительных образцов породы, имеющих типичные для подземного хранилища газа значения пористости и проницаемости, формирование имитатора породы пласта путем последовательного размещения представительных образцов породы в кернодержателе, подключение на вход имитатора породы пласта прецизионных насосов для закачки воды и газа, заполнение имитатора породы пласта водой и газом в объемах, соответствующих значениям начальной газо- и водонасыщенности подземного хранилища газа, определение открытого объема порового пространства имитатора породы пласта по объему закачанных в имитатор породы пласта воды и газа, установление пластовой температуры, создание в имитаторе породы пласта давления обжима и пластового давления, соответствующих значениям горного и пластового давлений подземного хранилища газа, и закрытие выхода имитатора породы пласта, последующую закачку газа на вход в имитатор породы пласта с помощью прецизионного насоса, достигая максимального для подземного хранилища газа значения пластового давления, имитацию отбора газа путем выпуска газа со входа имитатора породы пласта, достигая минимального для подземного хранилища газа значения пластового давления с регистрацией объема вышедшего газа и воды, определение активного газового объема имитатора породы пласта по разнице объемов газа и воды, вышедших из имитатора породы пласта, с последующим определением активного газового объема подземного хранилища газа, который определяют как произведение открытого объема порового пространства подземного хранилища газа на частное от деления активного газового объема имитатора породы пласта и открытого объема порового пространства имитатора породы пласта. Предложенное изобретение обеспечивает моделирование и оценку активного объема ПХГ в водоносных трещиновато-поровых структурах, адекватно отражающего поведение натурного пласта-коллектора проектируемого ПХГ. 7 з.п. ф-лы, 3 ил.

Формула изобретения RU 2 558 838 C1

1. Способ моделирования и оценки активного объема подземного хранилища газа в водоносных трещиновато-поровых структурах, включающий в себя отбор представительных образцов породы, имеющих типичные для подземного хранилища газа значения пористости и проницаемости, формирование имитатора породы пласта путем последовательного размещения представительных образцов породы в кернодержателе, подключение на вход имитатора породы пласта прецизионных насосов для закачки воды и газа, заполнение имитатора породы пласта водой и газом в объемах, соответствующих значениям начальной газо- и водонасыщенности подземного хранилища газа, определение открытого объема порового пространства имитатора породы пласта по объему закачанных в имитатор породы пласта воды и газа, установление пластовой температуры, создание в имитаторе породы пласта давления обжима и пластового давления, соответствующих значениям горного и пластового давлений подземного хранилища газа, и закрытие выхода имитатора породы пласта, последующую закачку газа на вход в имитатор породы пласта с помощью прецизионного насоса, достигая максимального для подземного хранилища газа значения пластового давления, имитацию отбора газа путем выпуска газа со входа имитатора породы пласта, достигая минимального для подземного хранилища газа значения пластового давления с регистрацией объема вышедшего газа и воды, определение активного газового объема имитатора породы пласта по разнице объемов газа и воды, вышедших из имитатора породы пласта, с последующим определением активного газового объема подземного хранилища газа, который определяют как произведение открытого объема порового пространства подземного хранилища газа на частное от деления активного газового объема имитатора породы пласта и открытого объема порового пространства имитатора породы пласта.

2. Способ по п. 1, отличающийся тем, что к выходу имитатора породы пласта подключают гидродинамический демпфер, имитирующий сжатие или восстановление водоносной структуры при закачке или отборе газа.

3. Способ по п. 2, отличающийся тем, что гидродинамический демпфер состоит из гидравлического аккумулятора, вход которого подключен к выходу имитатора породы пласта, и калиброванного насоса, подсоединенного к выходу гидравлического аккумулятора.

4. Способ по п. 3, отличающийся тем, что гидравлический аккумулятор представляет собой сосуд высокого давления, разделенный на две части плавающим поршнем, причем первая часть сосуда заполнена водой и подключена к выходу имитатора породы пласта, а вторая часть заполнена гидравлической жидкостью и подключена к калиброванному насосу.

5. Способ по п. 2, отличающийся тем, что гидродинамический демпфер состоит из калиброванного насоса, заполненного водой.

6. Способ по п. 5, отличающийся тем, что при увеличении давления до максимального значения пластового давления для подземного хранилища газа, увеличивают также и объем гидродинамического демпфера на величину ΔV, обеспечивающую максимальное контактирование закачиваемого газа с поровой структурой имитатора породы пласта, а при снижении давления до минимального значения пластового давления для подземного хранилища газа уменьшают объем гидродинамического демпфера на упомянутую величину ΔV.

7. Способ по п. 6, отличающийся тем, что величину ΔV выбирают таким образом, чтобы при закачке газа в имитатор породы пласта газ заполнял только поровое пространство имитатора породы пласта и не поступал в гидродинамический демпфер.

8. Способ по п. 1, отличающийся тем, что закачку газа и имитацию отбора газа осуществляют циклически.

Документы, цитированные в отчете о поиске Патент 2015 года RU2558838C1

СПОСОБ МОДЕЛИРОВАНИЯ ПЛАСТОВО-ФЛЮИДАЛЬНОЙ СИСТЕМЫ РАЗРАБАТЫВАЕМОГО МЕСТОРОЖДЕНИЯ 2011
  • Лапшин Владимир Ильич
  • Соколов Александр Федорович
  • Рассохин Андрей Сергеевич
  • Николаев Валерий Александрович
  • Рассохин Сергей Геннадьевич
  • Булейко Валерий Михайлович
  • Троицкий Владимир Михайлович
RU2468203C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ОСТАТОЧНОЙ НЕФТЕНАСЫЩЕННОСТИ ПОРОД-КОЛЛЕКТОРОВ ГАЗОКОНДЕНСАТНЫХ МЕСТОРОЖДЕНИЙ 1983
  • Бриндзинский А.М.
  • Петерсилье В.И.
RU1153619C
СПОСОБ ОПРЕДЕЛЕНИЯ АНИЗОТРОПИИ ПРОНИЦАЕМОСТИ ПЛАСТА В ЛАБОРАТОРНЫХ УСЛОВИЯХ 2009
  • Цаган-Манджиев Тимур Николаевич
  • Индрупский Илья Михайлович
  • Закиров Эрнест Сумбатович
  • Аникеев Даниил Павлович
RU2407889C1
СПОСОБ ОПРЕДЕЛЕНИЯ ВОДОНАСЫЩЕННОСТИ КЕРНА 2006
  • Скрипкин Антон Геннадьевич
  • Щемелинин Юрий Алексеевич
RU2315978C1
US 7295927 B2, 13.11.2007.

RU 2 558 838 C1

Авторы

Троицкий Владимир Михайлович

Рассохин Сергей Геннадьевич

Соколов Александр Федорович

Ваньков Валерий Петрович

Мизин Андрей Витальевич

Федосеев Александр Павлович

Алеманов Александр Евгеньевич

Даты

2015-08-10Публикация

2014-07-02Подача