Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора.
Аналогом является способ работы тепловой электрической станции, по которому весь поток обратной сетевой воды, возвращаемый от потребителей, последовательно нагревают паром отборов турбины в нижнем и в верхнем сетевых подогревателях, а затем направляют потребителям, охлаждение отработавшего пара производят циркуляционной водой, которую используют в качестве источника низкопотенциальной теплоты для испарителя теплонасосной установки, при этом весь поток сетевой воды после нижнего сетевого подогревателя дополнительно подогревают в конденсаторе теплонасосной установки (патент RU №2269656, МПК F01K 17/02, 10.02.2006).
Прототипом является способ работы тепловой электрической станции, содержащей подающий и обратный трубопроводы сетевой воды, паровую турбину с отопительными отборами пара и конденсатором, к которому подключены напорный и сливной трубопроводы циркуляционной воды, сетевые подогреватели, включенные по нагреваемой среде между подающим и обратным трубопроводами сетевой воды и подключенные по греющей среде к отопительным отборам, теплонасосную установку, испаритель которой подключен по греющей среде к сливному трубопроводу циркуляционной воды, при этом конденсатор теплонасосной установки по нагреваемой среде включен в подающий трубопровод сетевой воды после сетевых подогревателей, а также систему маслоснабжения подшипников паровой турбины, содержащую последовательно соединенные по греющей среде сливной трубопровод, маслобак, маслонасос и маслоохладитель, выход которого по нагреваемой среде соединен с напорным трубопроводом (патент RU № 2268372, МПК F01K 17/02, 20.01.2006).
В известном способе сетевую воду, поступающую от потребителей по обратному трубопроводу сетевой воды, с помощью сетевого насоса подают в сетевые подогреватели, где нагревают паром отопительных отборов турбины. Отработавший в турбине пар охлаждают в конденсаторе, для чего подают в него по напорному трубопроводу и отводят по сливному трубопроводу циркуляционную воду. Нагретую в сетевых подогревателях сетевую воду перед подачей потребителям дополнительно нагревают в конденсаторе теплонасосной установки, в качестве низкопотенциального источника теплоты в испарителе теплонасосной установки используют циркуляционную воду из сливного трубопровода. В паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем.
Таким образом, в известном способе работы тепловой электрической станции пар отопительных параметров из отборов паровой турбины поступает в паровое пространство нижнего и верхнего сетевых подогревателей, сетевая вода поступает от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, далее сетевую воду направляют в подающий трубопровод сетевой воды, отработавший пар поступает из паровой турбины в паровое пространство конденсатора, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, при этом конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости.
Основным недостатком аналога и прототипа является относительно низкий коэффициент полезного действия ТЭС по выработке электрической энергии из-за отсутствия полной утилизации сбросной скрытой теплоты парообразования в конденсаторе паровой турбины, обусловленного использованием вторичного контура (теплонасосной установки), отсутствия утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, а также отсутствия утилизации избыточной низкопотенциальной теплоты обратной сетевой воды, для дополнительной выработки электроэнергии.
Кроме этого, недостатком является низкий ресурс и надежность работы конденсатора паровой турбины из-за использования технической (циркуляционной) воды, которая загрязняет конденсатор паровой турбины. Из-за повышенных тепловых выбросов циркуляционной воды в водоем-охладитель нарушается его экосистема.
Задачей изобретения является разработка способа утилизации теплоты ТЭС, в котором устранены указанные недостатки аналога и прототипа.
Техническим результатом является повышение коэффициента полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины и утилизации избыточной низкопотенциальной теплоты обратной сетевой воды для дополнительной выработки электрической энергии, повышение ресурса и надежности работы конденсатора паровой турбины и снижение тепловых выбросов в окружающую среду.
Технический результат достигается тем, что в способе утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС), включающем направление пара отопительных параметров из отборов паровой турбины в паровое пространство нижнего и верхнего сетевых подогревателей, направление сетевой воды от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, при этом далее сетевую воду направляют в подающий трубопровод сетевой воды, а отработавший пар направляют из паровой турбины в паровое пространство конденсатора для конденсирования на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, согласно настоящему изобретению, в ТЭС используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
В качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Таким образом, технический результат достигается за счет полной утилизации сбросной низкопотенциальной теплоты (скрытой теплоты парообразования), утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора из паровой турбины с производственным отбором пара, которые осуществляют путем последовательного нагрева, соответственно, в конденсаторе паровой турбины, маслоохладителе, теплообменнике-охладителе сетевой воды и конденсаторе паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана C3H8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Сущность изобретения поясняется чертежом, на котором представлена тепловая электрическая станция, имеющая тепловой двигатель с теплообменником-конденсатором, теплообменник-охладитель сетевой воды и конденсационную установку.
На чертеже цифрами обозначены:
1 - паровая турбина,
2 - конденсатор паровой турбины,
3 - конденсатный насос конденсатора паровой турбины,
4 - основной электрогенератор,
5 - тепловой двигатель с замкнутым контуром циркуляции,
6 - турбодетандер,
7 - электрогенератор,
8 - теплообменник-конденсатор,
9 - конденсатный насос,
10 - верхний сетевой подогреватель,
11 - нижний сетевой подогреватель,
12 - подающий трубопровод сетевой воды,
13 - обратный трубопровод сетевой воды,
14 - теплообменник-охладитель сетевой воды,
15 - система маслоснабжения подшипников паровой турбины,
16 - сливной трубопровод,
17 - маслобак,
18 - маслонасос,
19 - маслоохладитель,
20 - напорный трубопровод,
21 - конденсационная установка,
22 - паровая турбина с производственным отбором пара,
23 - электрогенератор паровой турбины с производственным отбором пара,
24 - конденсатор паровой турбины с производственным отбором пара,
25 - конденсатный насос конденсатора паровой турбины с производственным отбором пара.
Тепловая электрическая станция включает последовательно соединенные паровую турбину 1, конденсатор 2 паровой турбины и конденсатный насос 3 конденсатора паровой турбины, основной электрогенератор 4, соединенный с паровой турбиной 1, которая соединена по греющей среде с верхним 10 и нижним 11 сетевыми подогревателями, включенными по нагреваемой среде между подающим 12 и обратным 13 трубопроводами сетевой воды, а также систему 15 маслоснабжения подшипников паровой турбины 1, содержащую последовательно соединенные по греющей среде сливной трубопровод 16, маслобак 17, маслонасос 18 и маслоохладитель 19, выход которого по нагреваемой среде соединен с напорным трубопроводом 20. В тепловую электрическую станцию введены теплообменник-охладитель 14 сетевой воды, конденсационная установка 21 и тепловой двигатель 5 с замкнутым контуром циркуляции, работающий по органическому циклу Ренкина.
Вход теплообменника-охладителя 14 по нагреваемой среде соединен с обратным трубопроводом 13 сетевой воды. Выход теплообменника-охладителя 14 по нагреваемой среде соединен с нижним сетевым подогревателем 11.
Конденсационная установка 21 содержит последовательно соединенные паровую турбину 22 с производственным отбором пара, имеющую электрогенератор 23, конденсатор 24 паровой турбины с производственным отбором пара и конденсатный насос 25 конденсатора паровой турбины с производственным отбором пара.
Замкнутый контур циркуляции теплового двигателя 5 выполнен в виде контура с низкокипящим рабочим телом, содержащим последовательно соединенные турбодетандер 6 с электрогенератором 7, теплообменник-конденсатор 8, конденсатный насос 9, причем выход конденсатного насоса 9 соединен по нагреваемой среде с входом конденсатора 2 паровой турбины, выход которого соединен по нагреваемой среде с входом маслоохладителя 19, выход маслоохладителя 19 по нагреваемой среде соединен с входом теплообменника-охладителя 14 сетевой воды, а выход теплообменника-охладителя 14 сетевой воды по нагреваемой среде соединен с входом конденсатора 24 паровой турбины с производственным отбором пара, выход которого соединен по нагреваемой среде с входом турбодетандера 6, образуя замкнутый контур охлаждения.
Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией, осуществляют следующим образом.
Способ включает в себя направление пара отопительных параметров из отборов паровой турбины 1 в паровое пространство нижнего 11 и верхнего 10 сетевых подогревателей, направление сетевой воды от потребителей по обратному 13 трубопроводу сетевой воды в нижний 11 сетевой подогреватель и верхний 10 сетевой подогреватель, при этом далее сетевую воду направляют в подающий 12 трубопровод сетевой воды, а отработавший пар направляют из паровой турбины 1 в паровое пространство конденсатора 2 для конденсирования на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, причем конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины 1 направляют в систему регенерации, а в паровой турбине 1 используют систему 15 маслоснабжения подшипников паровой турбины 1 с маслоохладителем 19, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара при помощи охлаждающей жидкости.
Отличием предлагаемого способа является то, что в ТЭС используют теплообменник-охладитель 14 сетевой воды, который устанавливают на обратном трубопроводе 13 сетевой воды, а также конденсационную установку 21, имеющую конденсатор 24 паровой турбины 22 с производственным отбором пара, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя 5 с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе 9 теплового двигателя, нагревают в конденсаторе 2 паровой турбины, нагревают в маслоохладителе 19, нагревают в теплообменнике-охладителе 14 сетевой воды, нагревают и испаряют в конденсаторе 24 паровой турбины с производственным отбором пара, расширяют в турбодетандере 6 теплового двигателя и конденсируют в теплообменнике-конденсаторе 8 теплового двигателя.
В качестве теплообменника-конденсатора 8 теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
В качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Пример конкретного выполнения
Отработавший пар, поступающий из паровой турбины 1 в паровое пространство конденсатора 2, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан C3H8). Мощность паровой турбины 1 передается соединенному на одном валу основному электрогенератору 4.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 3 конденсатора паровой турбины направляют в систему регенерации.
Преобразование сбросной низкопотенциальной тепловой энергии, отработавшего в турбине 1 пара, низкопотенциальной тепловой энергии системы 15 маслоснабжения подшипников паровой турбины 1, а также избыточной низкопотенциальной тепловой энергии обратной сетевой воды и высокопотенциальной тепловой энергии пара производственного отбора из паровой турбины 22 в механическую и далее в электрическую происходит в замкнутом контуре циркуляции теплового двигателя 5, работающего по органическому циклу Ренкина.
Таким образом, утилизацию сбросной низкопотенциальной теплоты (скрытой теплоты парообразования) отработавшего в турбине 1 пара, утилизацию низкопотенциальной теплоты системы 15 маслоснабжения подшипников паровой турбины 1, утилизацию избыточной низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора из паровой турбины 22 с производственным отбором пара осуществляют путем последовательного нагрева, соответственно, в конденсаторе 2 паровой турбины, маслоохладителе 19, теплообменнике-охладителе 14 сетевой воды и конденсаторе 24 паровой турбины с производственным отбором пара, низкокипящего рабочего тела (сжиженного пропана С3Н8) теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина.
Весь процесс начинается с сжатия в конденсатном насосе 9 сжиженного пропана C3H8, который последовательно направляют на нагрев вначале в конденсатор 2 паровой турбины, куда поступает отработавший в турбине 1 пар с температурой в интервале от 300 К до 313,15 К, а затем в маслоохладитель 19, куда поступает нагретое масло системы 15 маслоснабжения подшипников паровой турбины 1, и в теплообменник-охладитель 14 сетевой воды, куда поступает обратная сетевая вода из обратного трубопровода 13. При этом температура нагретого масла и обратной сетевой воды может варьироваться в интервале от 313,15 К до 343,15 К.
В процессе конденсации отработавшего в турбине 1 пара в конденсаторе 2 паровой турбины, а также в процессе теплообмена нагретого масла с сжиженным пропаном C3H8 в маслоохладителе 19 и в процессе теплообмена обратной сетевой воды с сжиженным пропаном C3H8 в теплообменнике-охладителе 14 сетевой воды происходит нагрев сжиженного пропана С3Н8 в пределах критической температуры в интервале от 308,15 К до 338,15 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, и далее его направляют на нагрев и испарение в конденсатор 24 паровой турбины с производственным отбором пара, куда поступает пар производственного отбора из паровой турбины 22 при температуре около 573 К.
Пар, поступающий из производственного отбора паровой турбины 22 в паровое пространство конденсатора 24, конденсируется на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость (сжиженный пропан С3Н8). Мощность паровой турбины 22 передается соединенному на одном валу основному электрогенератору 23.
Конденсация пара сопровождается выделением скрытой теплоты парообразования, которая отводится при помощи охлаждающей жидкости. Образующийся конденсат с помощью конденсатного насоса 25 конденсатора паровой турбины с производственным отбором пара направляют в систему регенерации.
В процессе конденсации пара производственного отбора в конденсаторе 24 паровой турбины происходит нагрев сжиженного пропана C3H8 до критической температуры 369,89 К с последующим его испарением и перегревом до сверхкритической температуры от 369,89 К до 420 К при сверхкритическом давлении от 4,2512 МПа до 13 МПа, который направляют в турбодетандер 6.
Процесс настроен таким образом, что в турбодетандере 6 не происходит конденсации газообразного пропана С3Н8 в ходе срабатывания теплоперепада. Мощность турбодетандера 6 передается соединенному на одном валу электрогенератору 7. На выходе из турбодетандера 6 газообразный пропан С3Н8 имеет температуру около 288 К с влажностью, не превышающей 12%.
Далее, при снижении температуры газообразного пропана C3H8, происходит его сжижение в теплообменнике-конденсаторе 8, выполненном, например, в виде конденсатора воздушного охлаждения, охлаждаемого воздухом окружающей среды в температурном диапазоне от 223,15 К до 283,15 К.
После теплообменника-конденсатора 8 в сжиженном состоянии пропан С3Н8 направляют для сжатия в конденсатный насос 9 теплового двигателя.
Далее органический цикл Ренкина на основе низкокипящего рабочего тела повторяется.
Использование конденсационной установки 21 позволяет повысить начальные параметры низкокипящего рабочего тела теплового двигателя с замкнутым контуром циркуляции до сверхкритических параметров, что приводит к увеличению теплоперепада на турбодетандере 6.
Использование предлагаемого способа работы тепловой электрической станции позволит, по сравнению с прототипом, повысить коэффициент полезного действия ТЭС за счет полного использования сбросной низкопотенциальной теплоты отработавшего пара, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора для дополнительной выработки электрической энергии, повысить ресурс и надежность работы конденсатора паровой турбины и снизить тепловые выбросы в окружающую среду.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560502C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560503C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560514C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560507C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560499C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560500C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560513C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2570943C2 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560512C1 |
СПОСОБ РАБОТЫ ТЕПЛОВОЙ ЭЛЕКТРИЧЕСКОЙ СТАНЦИИ | 2014 |
|
RU2560497C1 |
Изобретение относится к области энергетики и может быть использовано на тепловых электрических станциях (ТЭС) для утилизации сбросной низкопотенциальной теплоты в конденсаторах паровых турбин ТЭС, утилизации низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизации избыточной низкопотенциальной теплоты обратной сетевой воды и утилизации высокопотенциальной теплоты пара производственного отбора. Способ утилизации тепловой энергии, вырабатываемой ТЭС, включает направление пара отопительных параметров из отборов паровой турбины в паровое пространство нижнего и верхнего сетевых подогревателей, направление сетевой воды от потребителей по обратному трубопроводу сетевой воды в нижний и верхний сетевые подогреватели, при этом далее сетевую воду направляют в подающий трубопровод сетевой воды, а отработавший пар направляют из паровой турбины в паровое пространство конденсатора для конденсирования на поверхности конденсаторных трубок с охлаждающей жидкостью, причем конденсат направляют в систему регенерации, а в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости. В ТЭС используют теплообменник-охладитель сетевой воды, а также конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, при этом дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, системы маслоснабжения подшипников паровой турбины, обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции по органическому циклу Ренкина с низкокипящим рабочим телом, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, в маслоохладителе, в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере и конденсируют в теплообменнике-конденсаторе. Технический результат: повышение коэффициента полезного действия ТЭС и снижение тепловых выбросов в окружающую среду. 2 з.п. ф-лы, 1 ил.
1. Способ утилизации тепловой энергии, вырабатываемой тепловой электрической станцией (ТЭС), включающий направление пара отопительных параметров из отборов паровой турбины в паровое пространство нижнего и верхнего сетевых подогревателей, направление сетевой воды от потребителей по обратному трубопроводу сетевой воды в нижний сетевой подогреватель и верхний сетевой подогреватель, при этом далее сетевую воду направляют в подающий трубопровод сетевой воды, а отработавший пар направляют из паровой турбины в паровое пространство конденсатора для конденсирования на поверхности конденсаторных трубок, внутри которых протекает охлаждающая жидкость, причем конденсат с помощью конденсатного насоса конденсатора паровой турбины направляют в систему регенерации, а в паровой турбине используют систему маслоснабжения подшипников паровой турбины с маслоохладителем, причем при конденсации пара осуществляют утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара при помощи охлаждающей жидкости, отличающийся тем, что в ТЭС используют теплообменник-охладитель сетевой воды, который устанавливают на обратном трубопроводе сетевой воды, а также конденсационную установку, имеющую конденсатор паровой турбины с производственным отбором пара, и дополнительно осуществляют утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора, при этом утилизацию сбросной низкопотенциальной тепловой энергии отработавшего в турбине пара, утилизацию низкопотенциальной теплоты системы маслоснабжения подшипников паровой турбины, утилизацию низкопотенциальной теплоты обратной сетевой воды и утилизацию высокопотенциальной теплоты пара производственного отбора осуществляют при помощи теплового двигателя с замкнутым контуром циркуляции, работающего по органическому циклу Ренкина, в котором в качестве охлаждающей жидкости используют низкокипящее рабочее тело, циркулирующее в замкнутом контуре, при этом его сжимают в конденсатном насосе теплового двигателя, нагревают в конденсаторе паровой турбины, нагревают в маслоохладителе, нагревают в теплообменнике-охладителе сетевой воды, нагревают и испаряют в конденсаторе паровой турбины с производственным отбором пара, расширяют в турбодетандере теплового двигателя и конденсируют в теплообменнике-конденсаторе теплового двигателя.
2. Способ по п. 1, отличающийся тем, что в качестве теплообменника-конденсатора теплового двигателя используют или конденсатор воздушного охлаждения, или конденсатор водяного охлаждения, или конденсатор воздушного и водяного охлаждения.
3. Способ по п. 1, отличающийся тем, что в качестве низкокипящего рабочего тела используют сжиженный пропан C3H8.
Авторы
Даты
2015-08-20—Публикация
2014-03-11—Подача