Изобретение относится к области строительства и может быть использовано для энергетически и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения.
Известна термоскважина для извлечения из грунта тепловой энергии, входящая в состав теплонасосной системы теплоснабжения, обеспечивающей горячей водой экспериментальный энергоэффективный жилой дом (Статья «Энергоэффективный жилой дом в Москве» журнал «Вентиляция, отопление, кондиционирование воздуха, теплоснабжение и строительная теплофизика» АВОК №4, 1999 г.).
Наиболее близким к предлагаемому изобретению техническим решением-прототипом является термоскважина для извлечения и/или сброса в грунт тепловой энергии, описанная в Патенте РФ Васильева Г.П. на изобретение Ru №2364795 С2 «Теплонасосная система теплоснабжения многоэтажных зданий». Теплонасосная система теплоснабжения, реализующая этот способ, включает систему сбора низкопотенциального тепла грунта и систему утилизации вторичного тепла вентиляционных выбросов и/или систему утилизации сбросного тепла канализационных стоков. В этой теплонасосной системе теплоснабжения термоскважины могут эксплуатироваться как в режиме извлечения тепловой энергии из грунта (режим теплоснабжения), так и в режиме сброса тепловой энергии в грунт (режим холодоснабжения). В связи с этим, диапазон изменения температуры теплоносителя термоскважины в годовом цикле значительно увеличивается.
Недостатком термоскважины-прототипа является низкая эффективность термоскважины, вызванная снижением температурного напора между грунтом и теплоносителем термоскважины, обусловленная теплообменом между полостями термоскважины через стенку внутренней трубы. Еще одним недостатком термоскважины-прототипа является значительный объем теплоносителя, необходимого для эксплуатации термоскважины, а также необходимость включения в гидравлический контур термоскважины расширительных емкостей, компенсирующих температурное расширение теплоносителя.
Предлагаемое изобретение решает техническую задачу повышения энергетической и экономической эффективности термоскважин. Решение этих задач достигается за счет того, что в термоскважине для извлечения или сброса в грунт тепловой энергии, состоящей из герметизированной скважины, в герметичную полость которой встроена внутренняя труба, образующая с полостью термоскважины единый гидравлический контур, внутренняя труба дополнительно теплоизолирована пористым материалом с замкнутыми порами.
При этом толщина теплоизоляции внутренней трубы может выбираться, в том числе и из условия компенсации температурного изменения объема теплоносителя термоскважины в процессе эксплуатации.
Предлагаемая термоскважина для извлечения или сброса в грунт тепловой энергии позволяет в значительной мере повысить энергетическую эффективность термоскважины за счет уменьшения теплообмена через стенку внутренней трубы между внешней и внутренней полостями термоскважины, а также повысить ее экономическую эффективность за счет исключения или существенного сокращения капиталовложений в расширительные емкости, компенсирующие температурное расширение/сжатие теплоносителя термоскважины.
Сущность предлагаемой термоскважины для извлечения или сброса в грунт тепловой энергии поясняется схемой, представленной на Фиг.1.
Термоскважина для извлечения или сброса в грунт тепловой энергии включает герметизированную скважину 1 с циркулирующим по ней теплоносителем 2, в герметичную полость 3 которой встроена внутренняя труба 4, образующая с полостью термоскважины единый гидравлический контур 5, при этом внутренняя труба 4 дополнительно теплоизолирована пористым материалом 6 с замкнутыми порами.
Термоскважина для извлечения или сброса в грунт тепловой энергии работает следующим образом.
Теплоноситель 2 циркулирует по замкнутому гидравлическому контуру 5, образованному герметичной полостью 3 термоскважины 1 и полостью внутренней трубы 4. Внутренняя труба 4 дополнительно теплоизолирована пористым материалом 6 с замкнутыми порами, в связи с чем наиболее холодный теплоноситель 2 поступает без потерь температурного потенциала в наиболее теплую точку (подошва термоскважины), что обеспечивает максимальный температурный напор между грунтом и теплоносителем термоскважины. При этом за счет сжатия или расширения воздуха или газа в замкнутых порах пористого материала 6 и изменения его объема компенсируется температурное расширение/сжатие теплоносителя 2 термоскважины 1.
Предлагаемая термоскважина для извлечения или сброса в грунт тепловой энергии позволяет в значительной мере повысить энергетическую и экологическую эффективность термоскважины за счет дополнительной теплоизоляции внутренней трубы пористым материалом с замкнутыми порами.
название | год | авторы | номер документа |
---|---|---|---|
ГЕОТЕРМАЛЬНАЯ ТЕПЛОНАСОСНАЯ СИСТЕМА | 2015 |
|
RU2591362C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА | 2012 |
|
RU2499197C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛА ПРИПОВЕРХНОСТНОГО ГРУНТА | 2015 |
|
RU2615678C2 |
Теплонасосная система отопления и горячего водоснабжения помещений | 2017 |
|
RU2657209C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА | 2009 |
|
RU2416761C1 |
СПОСОБ ИСПОЛЬЗОВАНИЯ ТЕПЛОАККУМУЛЯЦИОННЫХ СВОЙСТВ ГРУНТА | 2009 |
|
RU2416760C1 |
УСТРОЙСТВО ДЛЯ ИЗВЛЕЧЕНИЯ ТЕПЛОВОЙ ЭНЕРГИИ ИЗ ГРУНТА И УТИЛИЗАЦИИ ТЕПЛОТЫ ФАЗОВЫХ ПЕРЕХОДОВ | 2021 |
|
RU2814344C2 |
ГИБРИДНАЯ ТЕПЛОНАСОСНАЯ СИСТЕМА ТЕПЛОХЛАДОСНАБЖЕНИЯ | 2010 |
|
RU2436016C1 |
СПОСОБ УПРАВЛЕНИЯ И УСТРОЙСТВО ГРУНТОВОГО ТЕПЛООБМЕННИКА | 2016 |
|
RU2647263C2 |
СПОСОБ И УСТРОЙСТВО ДЛЯ КРУГЛОГОДИЧНЫХ ОХЛАЖДЕНИЯ, ЗАМОРАЖИВАНИЯ ГРУНТА ОСНОВАНИЯ ФУНДАМЕНТА И ТЕПЛОСНАБЖЕНИЯ СООРУЖЕНИЯ НА ВЕЧНОМЕРЗЛОМ ГРУНТЕ В УСЛОВИЯХ КРИОЛИТОЗОНЫ | 2012 |
|
RU2519012C2 |
Изобретение относится к области строительства и может быть использовано для энергетически и экологически эффективного теплохладоснабжения зданий и сооружений различного назначения. Термоскважина для извлечения или сброса в грунт тепловой энергии работает следующим образом. Теплоноситель 2 циркулирует по замкнутому гидравлическому контуру 5, образованному герметичной полостью 3 термоскважины 1 и полостью внутренней трубы 4. Внутренняя труба 4 дополнительно теплоизолирована пористым материалом 6 с замкнутыми порами, в связи с чем наиболее холодный теплоноситель 2 поступает без потерь температурного потенциала в наиболее теплую точку (подошва термоскважины), что обеспечивает максимальный температурный напор между грунтом и теплоносителем термоскважины. При этом за счет сжатия воздуха в замкнутых порах пористого материала 6 компенсируется температурное расширение/сжатие теплоносителя 2 термоскважины 1. 1 з.п. ф-лы, 1 ил.
1. Термоскважина для извлечения или сброса в грунт тепловой энергии, состоящая из герметизированной скважины с циркулирующим теплоносителем, в герметичную полость которой встроена внутренняя труба, образующая с полостью термоскважины единый гидравлический контур, отличающаяся тем, что внутренняя труба дополнительно теплоизолирована пористым материалом с замкнутыми порами.
2. Термоскважина для извлечения или сброса в грунт тепловой энергии по п.1, отличающаяся тем, что толщина теплоизоляции внутренней трубы выбирается в том числе и из условия компенсации температурного изменения объема теплоносителя термоскважины в процессе эксплуатации.
Генераторное устройство для самодвижущихся повозок | 1948 |
|
SU73392A1 |
СПОСОБ ТЕПЛОИЗОЛЯЦИИ СКВАЖИНЫ В ЗОНЕ МНОГОЛЕТНЕМЕРЗЛЫХ ПОРОД | 2004 |
|
RU2281383C1 |
RU 93052300 A, 20.07.1996 | |||
Способ приготовления связующего материала для стержней литейного производства | 1950 |
|
SU90452A1 |
Водопропускная труба под дорожной насыпью | 1982 |
|
SU1010176A1 |
US 4231884 A1, 04.11.1980 | |||
WO 2007145733 A1, 21.12.2007 |
Авторы
Даты
2015-08-20—Публикация
2012-03-06—Подача