Назначение
Изобретение относится к экологии, а именно к методам дистанционного выявления радиационных загрязнений поверхности Земли с помощью летательных аппаратов.
Уровень техники
Существующие методы дистанционного мониторинга радиоактивных загрязнений делятся на прямые и косвенные. Первые регистрируют интенсивность и спектр ионизирующего излучения объекта, вторые основаны на регистрации изменений окружающей среды под действием излучения. Хотя прямые методы и получили широкое распространение, однако реально их пространственная разрешающая способность и чувствительность недостаточны и реально позволяют производить измерения с расстояния не более сотен метров. Кроме того, ряд видов излучений обладает малой проникающей способностью, и расстояние для измерений еще более сокращается. Выход состоит в использовании косвенных методов, позволяющих оценить уровень радиоактивного загрязнения по отклику окружающей среды на ионизирующее излучение, а именно - приземных слоев атмосферы, поверхности океана и Земли.
Согласно предварительным исследованиям ученых Роскосмоса и РАН (книга К.А. Боярчук, A.M. Гальпер, С.В. Колдашов, С.Е. Улин «Прикладная ядерная космофизика». МИФИ. Москва. 2007 г.) наиболее перспективными методами мониторинга радиоактивных загрязнений из космоса являются методы, описанные ниже.
Биоиндикация. Изменение цветности водоемов и растительного покрова может быть зарегистрировано с помощью спектрозональной съемки. Возможно картирование спектров флюоресценции в диапазоне длин волн 320-370 нм. Однако этот метод не дает однозначных результатов и требует наземной проверки.
Метод малых газовых составляющих. Быстрые ион-молекулярные реакции ионизированной атмосферы приводят к изменению концентрации ее основных малых газовых составляющих, регистрация которых возможна, например, с помощью метода газокорреляционной ИК-радиометрии и лидарных технологий. В качестве маркеров прежде всего могут быть использованы озон, гидроксил ОН, окислы азота NO и NO2. Измеренная концентрация этих молекул отчетливо характеризует величину поглощенной дозы (скорости ионизации). Однако этот метод обладает малой чувствительностью, а особенно при относительно невысоких уровнях загрязнения.
Ионосферный отклик. Ионизация атмосферы приводит к изменению основных электрических характеристик в цепи тропосфера-ионосфера. Эти возмущения могут быть зарегистрированы с помощью ионозонда, размещенного на борту космического аппарата. Недостатком метода являются погрешности, возникающие от космического излучения и солнечных вспышек.
Нейтральный кластер. Во влажной атмосфере при определенных условиях могут образовываться сложные химически активные структуры типа ион-радикалов. В результате ассоциации таких гидратированных ион-радикалов образуется нейтральный кластер. Ожидаемый диапазон излучения кластеров перекрывается диапазонами, в которых работают теле- и радиопередатчики 108-142 МГц, 148-173 МГц. Это радиоизлучение может быть зарегистрировано специальным бортовым радиоспектрометром. Однако это должен быть высокочувствительный сложный дорогой прибор.
Латентное тепло. Под воздействием ионизирующего излучения в приземном слое в зоне радиоактивного выброса может происходить локальное резкое падение влажности воздуха и повышение температуры. Это выделение тепла, называемое в литературе латентным, вызывается нагревом паров воды радиоактивным излучением. За прототип примем определение радиоактивных загрязнений по оценке выделения латентного тепла (книга «Прикладная ядерная космофизика», авторы: К.А. Боярчук, A.M. Гальпер, С.В. Колдашов, С.Е. Улин, МИФИ, Москва, 2007 г., с.49-51). Эти аномалии термодинамических характеристик могут наблюдаться со спутников. Можно регистрировать инфракрасное (ИК) излучение насыщенных паров воды с помощью сканирующих ИК-радиометров или использовать микроволновые сверхвысокочастотные (СВЧ) температурно-влажностные зондировщики. Эти приборы давно применяются на метеорологических космических аппаратах. Однако при регистрации ИК-излучения могут возникать ошибки, связанные с дополнительным теплом, создаваемым радиоактивным радоном, выделяющимся из земных недр и являющимся одним из предвестников землетрясений, а также с излучением от Солнца и космоса, отраженным от облаков в виде ИК-излучения. При регистрации СВЧ излучения паров воды микроволновым температурно-влажностным зондировщиком ошибки могут вноситься пылевыми аэрозолями, вносимыми в атмосферу.
Задачей, решаемой изобретением, является повышение точности определения мест локальных радиоактивных загрязнений по методу определения латентного тепла путем использования разных частей спектра электромагнитных волн и исключения из рассмотрения факторов, влияющих на уровень латентного тепла и не связанных с радиоактивным загрязнением.
Раскрытие изобретения
Способ обнаружения радиационного загрязнения с помощью летательных аппаратов состоит в регистрации зон латентного тепла в приземном слое атмосферы. Основной процесс выделения скрытой теплоты испарения состоит в конденсации паров воды на ионах, образовавшихся после ионизации воздуха излучением радиоактивных загрязнений. В целях более точной и надежной регистрации этих загрязнений предлагается взаимное наложение карт указанных загрязнений, полученных в разных спектральных диапазонах. Для одной и той же местности, в одном масштабе, создают карты распределения латентного тепла в атмосфере, полученные на основе анализа излучений в инфракрасном диапазоне частот 8-14 мкм, и карты распределения оценочных поправок к химическому потенциалу паров воды в атмосфере, полученные в результате измерений температуры и влажности в ее приземном слое на основе анализа радиоизлучений в диапазоне сантиметровых и миллиметровых волн. Затем сравнивают данные по аномалиям к фону латентного тепла и аномалиям к фону оценочных поправок к химическому потенциалу паров воды. Места совпадения аномальных зон по обеим картам постулируют как места радиационных загрязнений.
Для составления карт оценочных поправок к химическому потенциалу паров воды используют радиоизлучения в диапазонах частот 18,7; 23,8; 36,5; 91; 183,31 ГГц.
Наличие карт радиоактивной загрязненности, полученных в разных спектральных диапазонах, позволяет исключить влияние побочных процессов, не связанных с радиоактивным загрязнением. В частности, запыление атмосферы по-разному сказывается на измерениях в СВЧ-диапазоне и в ИК-диапазоне. Последовательное сопоставление карт, полученных в течение нескольких суток, позволяет исключить временные вариации, связанные с солнечной активностью и выбросом в атмосферу газа радона как предшественника землетрясений. Последнее связано с тем, что основной изотоп радона 222Ra имеет короткий период полураспада (3,8 суток) и, кроме того, облако радона может менять положение под действием ветра и диффузии.
В качестве интегрального индикатора латентного тепла для анализа радиоизлучений в диапазоне сантиметровых и миллиметровых волн взята оценочная поправка химического потенциала как наиболее полная характеристика энергетического процесса.
Химический потенциал представляет собой усредненную по объему энергию связи молекулы воды в процессе гидратации. Увеличение энергии связи можно выразить в виде поправки химического потенциала, которая рассчитывается по формуле, содержащей лишь известные измеряемые величины: температуру и влажность воздуха.
Для последующего уточнения зон загрязнения можно использовать карты распределения оценочных поправок к химическому потенциалу паров воды, полученные из измерений на разных высотах над поверхностью земли с помощью СВЧ-радиометра, регистрирующего вертикальный профиль температуры и влажности атмосферы.
Осуществление изобретения
Способ обнаружения радиационного загрязнения с помощью летательных аппаратов состоит в регистрации зон латентного тепла в приземном слое атмосферы. Для его реализации создают карты распределения латентного тепла в атмосфере, полученные на основе анализа излучений в инфракрасном диапазоне частот 8-14 мкм. Для создания карт может использоваться ИК-радиометр того же типа, что работали на метеорологических космических аппаратах (КА) «Метеор». Затем, для той же местности, в том же масштабе, создают карты распределения оценочных поправок к химическому потенциалу паров воды в атмосфере, рассчитанные по излучениям, полученным в сантиметровом и миллиметровом диапазонах спектра. Абсолютная величина поправки к усредненному химическому потенциалу паров воды в атмосфере ΔU, измеряемая в электрон-вольтах, может оцениваться по формуле:
ΔU=5,8·10-10 (20·Tg+5463)2 ln (100/H),
где Tg - температура воздуха, °C, Н - относительная влажность в %.
Для создания этих карт может использоваться СВЧ-радиометр типа МТВЗА (модуль температурно-влажностного зондирования атмосферы), работавший на КА «Метеор-М» и функционировавший в диапазоне от 18 до 183 ГГц и содержавший 26 каналов.
Затем сравнивают данные по аномалиям к фону латентного тепла и аномалиям к фону оценочных поправок к химическому потенциалу паров воды. Места совпадения аномальных зон по обеим картам постулируют как места радиационных загрязнений. Для последующего уточнения зон загрязнения можно использовать карты распределения оценочных поправок к химическому потенциалу паров воды, полученные из измерений на разных высотах над поверхностью земли, так как СВЧ-радиометр типа МТВЗА дает возможность получать вертикальный профиль температуры и влажности атмосферы.
название | год | авторы | номер документа |
---|---|---|---|
Способ краткосрочного прогноза землетрясений | 2016 |
|
RU2645878C1 |
СПОСОБ ОБНАРУЖЕНИЯ РАДИОАКТИВНЫХ ЗАГРЯЗНЕНИЙ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ, В ВОДНОМ И ПРИДОННОМ СЛОЯХ ГИДРОСФЕРЫ | 2001 |
|
RU2207597C2 |
СПОСОБ ДИСТАНЦИОННОГО КОНТРОЛЯ РАДИАЦИОННОЙ ОБСТАНОВКИ ЗОН С ОБЪЕКТАМИ РАДИОАКТИВНЫХ ВЫБРОСОВ И ЗАГРЯЗНЕНИЙ | 1999 |
|
RU2147137C1 |
СПОСОБ ОПРЕДЕЛЕНИЯ ЗАГРЯЗНЕНИЯ ОКРУЖАЮЩЕЙ СРЕДЫ ПРИ АВАРИЙНЫХ ВЫБРОСАХ НА АЭС | 2012 |
|
RU2497151C1 |
ПЕРЕДВИЖНАЯ ЛАБОРАТОРИЯ МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ | 2014 |
|
RU2547742C1 |
СПОСОБ ОБНАРУЖЕНИЯ ИСТОЧНИКОВ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ (ВАРИАНТЫ) | 2002 |
|
RU2230339C2 |
СПОСОБ ГЕОЭКОЛОГИЧЕСКОГО МОНИТОРИНГА С ИНТЕГРАЛЬНО-КОМПЛЕКСНОЙ ОЦЕНКОЙ ИНДЕКСА ЭКОЛОГИЧЕСКОЙ ОПАСНОСТИ СРЕДЫ | 2008 |
|
RU2423727C2 |
Способ контроля фонового уровня радиации вокруг АЭС | 2015 |
|
RU2615706C1 |
СПОСОБ ОБНАРУЖЕНИЯ ОБЪЕКТОВ ЯДЕРНЫХ ТЕХНОЛОГИЙ РАДИОЗОНДИРОВАНИЕМ | 2011 |
|
RU2502087C2 |
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТУРБУЛЕНТНОЙ ДИФФУЗИИ В ПРИЗЕМНОМ СЛОЕ АТМОСФЕРЫ | 2016 |
|
RU2656114C2 |
Изобретение относится к дистанционным способам радиационных исследований и может быть использовано для выявления радиационных загрязнений поверхности Земли. Сущность: на основе анализа излучений в инфракрасном диапазоне частот 8-14 мкм создают карты распределения латентного тепла в атмосфере. Создают карты распределения оценочных поправок к химическому потенциалу паров воды в атмосфере на основе излучений, полученных в сантиметровом и миллиметровом диапазонах спектра. Сравнивают данные по аномалиям к фону латентного тепла и аномалиям к фону оценочных поправок к химическому потенциалу паров воды. Места совпадения аномальных зон по обеим картам выделяют как места радиационных загрязнений. Технический результат: повышение точности обнаружения мест локальных радиоактивных загрязнений. 3 з.п. ф-лы.
1. Способ обнаружения радиационного загрязнения, заключающийся в дистанционной регистрации зон латентного тепла в приземном слое атмосферы, вызываемым ее нагревом радиоактивным излучением, отличающийся тем, что в одном масштабе для одной и той же местности создают карты распределения латентного тепла в атмосфере, полученные на основе анализа излучений в инфракрасном диапазоне частот 8-14 мкм, и карты распределения оценочных поправок к химическому потенциалу паров воды в атмосфере, полученные в результате измерений температуры и влажности в ее приземном слое на основе анализа радиоизлучений в диапазоне сантиметровых и миллиметровых волн, затем сравнивают данные по аномалиям к фону латентного тепла и аномалиям к фону оценочных поправок к химическому потенциалу паров воды, и места совпадения аномальных зон по обеим картам постулируют как места радиационных загрязнений.
2. Способ обнаружения радиационного загрязнения по п.1, отличающийся тем, что для составления карт оценочных поправок к химическому потенциалу паров воды используют радиоизлучения в диапазонах частот 18,7; 23,8; 36,5; 91; 183,31 ГГц.
3. Способ обнаружения радиационного загрязнения по п.1, отличающийся тем, что проводят сопоставление карт, полученных последовательно в течение нескольких суток.
4. Способ обнаружения радиационного загрязнения по п.1, отличающийся тем, что используют карты распределения оценочных поправок к химическому потенциалу паров воды в атмосфере, созданные для разных высот над поверхностью земли по данным вертикального профиля температуры и влажности, полученным от СВЧ-измерений.
К.А.Боярчук и др | |||
Перспективы мониторинга из космоса радиоактивных загрязнений на поверхности Земли и в нижних слоях атмосферы / Вопросы электромеханики | |||
Труды ВНИИЭМ, 2005, т.102, стр.183-209 | |||
К.А.Боярчук и др | |||
Дистанционный мониторинг обстановки окружающей среды вокруг атомных электростанций с космических аппаратов / Геоматика, 2013, N1, стр.63-67 |
Авторы
Даты
2015-08-27—Публикация
2013-11-18—Подача